• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • Tagged with
  • 28
  • 28
  • 28
  • 25
  • 25
  • 15
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the regulation of central carbon metabolism in S. cerevisiae

Bruck, Josef 08 April 2013 (has links)
Ziel dieser Arbeit war es, den zentralen Kohlenstoffwechsel mit besonderem Fokus auf Regulation zu untersuchen, insbesondere durch die Auftrennung von zwei Regulationsebenen: metabolische Regulation, assoziiert mit direkten Wech- selwirkungen zwischen Metaboliten und Enzymen, sowie hierarchische Regulation, assoziiert mit Änderungen in Enzymmengenänderungen durch die Regulation von de novo Enzymproduktion. Unsere Untersuchungen basieren größtenteils auf drei Datensätzen aus glukoselimitierten Chemostatkulturen von S. cerevisiae. Im Kap. 2 wurden Extrazelluläre Bedingungen im Makroskopischen unter- sucht. Das wichtigsten Ergebnis dieser the- oretischen Analyse ist die Charakterisierung des Selektionsdruckes in einem Chemostatkultur. Im Kap. 4 wurde eine Analyse auf Systemebene des zentralen Kohlenstoffwech- sels durchgeführt. Unter Verwendung der Metaboliten- und der Flußdaten wurde ein kinetisches Modell konstruiert, welches wesentliche Teile des zentralen Kohlen- stoffwechsels umfaßt. Die meisten kinetischen Ausdrücke und Parameterwerte wurden aus einem bestehenden kinetischen Modells (Teusink-Modell) übernom- men. / In this work, we aimed to elucidate central carbon metabolism focusing on the aspect of regulation, especially by separating two regulatory levels: metabolic regulation, associated with direct interactions of metabolites and enzymes, and hierarchic regulation, associated with enzyme level change via regulation of de novo enzyme production. Our investigations were largely based on the analysis of three datasets from glucose limited continuous cultures of S. cerevisiae. Extracellular conditions on the macroscopic scale were investigated in Chapter 2. This was inspired by the perceived lack of clarity regarding an important aspect: concentration of glucose, the limiting nutrient and main carbon source in these cultures. The main outcome of this theoretical analysis was characterisation of the selection pressure in a chemostat culture, as selecting for cells which produce the growth rate, defined by the pre-set dilution rate, with lower external concentration of the limiting nutrient. Flux regulation on the scale of individual enzymes was investigated for selected reactions in Chapter 3. This analysis was based on the attempt to reproduce flux changes through these reactions, using enzyme kinetic expressions with inputs from the three aforementioned datasets. The notion of hierarchic and metabolic regulation was introduced and modified. System-level analysis of central carbon metabolism was undertaken in Chap- ter 4. Using the information on metabolite levels and flux, a kinetic model representing significant parts of central carbon metabolism was constructed. To get feasible flux distributions, constrained metabolic flux balance analysis was performed, using a stoichiometric network, constructed to be consistent with the model’s stoichiometry. Fitting the model resulted in two sets of parameters corresponding to steady states reproducing, the nominal data values of the anaerobic and the fully aerobic conditions.
2

From signal to metabolism

Lubitz, Timo 12 May 2016 (has links)
Das Leben und Überleben einer Zelle wird auf verschiedenen Ebenen streng reguliert. Diese Ebenen sind eng miteinander verknüpft: (i) Signalwege leiten extrazelluläre Signale in den Zellkern, wo (ii) Genregulation sie zu Proteinen übersetzt, und (iii) Proteine kontrollieren metabolische Funktionen, die Nährstoffe zu Energie und zellulären Bausteinen konvertieren. Diese Systeme sind hochkomplex und werden oft nur einzeln betrachtet. Systembiologie ist ein interdisziplinäres Forschungsgebiet, das Methoden anbietet, um Informationen aus heutigen Hochdurchsatz-Experimenttechnologien zu extrahieren. Diese Methoden können effektiv sein, um die vorgenannten Systeme einzeln oder im Ganzen zu untersuchen. In dieser Doktorarbeit wende ich Methoden an, um Signalwege und Zellmetabolismus zu erforschen, und ich präsentiere neue Arbeitsabläufe für das Modellieren und Analysieren dieser Systeme. Beide Methoden sind auf großskalige Netzwerkrekonstruktionen fokussiert. Da die Erhältlichkeit von xperimentellen Daten eines der größten Probleme der Systembiologie darstellt, befassen sich die Methoden explizit mit dem Umgang mit Wissenslücken. Sie werden auf den Snf1 Signalweg und den Metabolismus von Hefezellen angewendet und vermitteln neue Erkenntnisse über diesen Modellorganismus. Des Weiteren präsentiert diese Arbeit eine eingehende Analyse vom metabolischen Reprogrammieren in Darmkrebszellen, welche bisher unbekannte Zusammenhänge von metabolischer Funktionalität und Onkogenen beinhaltet. Zum Abschluss stelle ich unseren Vorschlag für ein standardisiertes Datenaustauschformat vor, welches seinen Schwerpunkt auf Datentabellen der Systembiologie legt. Zusammenfassend behandelt diese Doktorarbeit die Signalwege und den Metabolismus von Zellen, inklusive neuer Modellierabläufe und biologischer Erkenntnisse. Diese Erkenntnisse werden in den Kontext unseres aktuellen Wissensstandes gesetzt und darauf aufbauend werden neue potentielle Ansatzpunkte für Experimente vorgeschlagen. / Cellular life is governed on different layers of regulation, which are tightly interconnected: (i) Signalling pathways transmit extracellular signals to the cells’ nucleus, where (ii) gene regulation translates these signals into proteins, and (iii) proteins control metabolic functions, which convert nutrients to energy and cell building blocks. Due to the complexity of each of these systems, they are often analysed individually or only partially. Systems Biology is an interdisciplinary field of research that offers techniques to harvest the information of todays high-throughput experiments. These techniques can be powerful approaches to investigate the aforementioned regulatory layers of a cell either individually or as a whole. In this thesis, I am employing means of Systems Biology to explore signalling pathways and metabolism, and I provide novel workflows for modelling and exploring these systems. Both workflows are focussed on accurate large-scale network reconstructions of the target system. Since one of the major problems in Systems Biology is the availability of experimental data, the workflows put emphasis on the handling of knowledge gaps. They are applied on the Snf1 pathway and metabolism in yeast and provide new findings about this model organism. Furthermore, this thesis presents an in-depth analysis of metabolic reprogramming in colorectal cancer cells, which yields previously unknown coherences of metabolic function and oncogenes. Finally, I am presenting a proposal for a standardised data format in Systems Biology, which is based on data tables. In summary, this thesis comprises works on signalling pathways and cell metabolism, which includes novel modelling workflows and new biological findings, analyses their impact on the scientific state of the art, and proposes directions for new experimental targets.
3

Predictive computational modeling for improved treatment strategies

Schelker, Max 23 October 2017 (has links)
Krebs und Infektionskrankheiten, wie z.B. Influenza, stellen zwei der großen Bedrohungen für die Menschheit dar. Gerade durch den demographischen Wandel sind immer mehr Menschen gefährdet. Mathematische Modelle von Krankheiten decken verschiedene Detailebenen ab -- von epidemologischen Modellen der Virusinfektion bis zu intrazellulären Modellen der Signaltransduktion in einzelnen Krebszellen. Diese Modelle, sofern sie anhand von biologische Daten kalibriert wurden, können sich als sehr nützlich erweisen um Hypothesen zu bisher unbekannten Wechselwirkungen zu generieren, Wirkstoffkandidaten vorherzusagen, und die Funktionsweise von existierenden Wirkstoffen besser zu verstehen. Im Rahmen dieser Arbeit möchte ich mehrere Projekte vorstellen, in denen prädiktive mathematische Modelle dazu benutzt wurden, tiefere Einblicke in die biologischen Prozesse zu gewinnen und die Therapieansätze bei Krebserkrankungen und den damit verbundenen Gesundheitsproblemen zu verbessern. Im ersten Teil geht es um die Bedeutung von gemeinschaftlich entwickelter Software für die Systembiologie. Eine offene und erweiterbare Modellierungssoftware ermöglicht es ständig verbessert zu werden und an die Bedürfnisse der Nutzer angepasst zu werden. Im zweiten Projekt wurden die intrazellulären Prozesse während der frühen Influenza A Infektion untersucht. Durch eine Kombination von biologischen Messungen und mathematischer Modellierung konnte der Abbau von viraler RNA wähernd des Transportes durch das Wirtszellzytoplasma als limitierender Faktor für die erfolgreiche Infektion identifiziert werden. Mit Hilfe eines experimentell modifizierten viralen Hämagglutintin-Proteins mit veränderter pH-Abhängigkeit konnte gezeigt werden, dass sich der Abstand zum Zellkern, in dem das virale Genom freigesetzt wird, vergrößert. Die Modellvorhersage, dass die Infektion dadurch weniger effektiv wird, konnte experimentell bestätigt werden. Im dritten Projekt beschäftigte ich mich mit gesundheitlichen Problemen, die im Zusammenhang mit einer Krebserkrankung und deren Behandlung auftreten können. Chemotherapie oder die Krebserkrankung selbst führt bei vielen Patienten zu einer Blutarmut (Anämie). Diese wird aktuell entweder durch regelmäßige Bluttransfusionen oder durch Verabreichung von sogenannten Erythropoiesis-Stimulating Agents (kurz: ESA, zu Deutsch: Erythropoese-stimulierende Substanzen) behandelt. Mithilfe eines publizierten mathematischen Modells zur ESA-EpoR Interaktion konnten die Bindungseigenschaften verschiedener ESAs charakterisiert und zudem die Anzahl der Bindungsstellen auf unterschiedlichen Zelllinien bestimmt werden. Durch eine Erweiterung des Modells mit einem pharmakokinetischen und -dynamischen Teil konnte die Dosierung für Anämiepatienten retrospektiv verbessert werden. Das letzte Projekt stellt eine computerbasierte Methode zur Analyse und Entschlüsselung der zellulären Zusammensetzung von Tumorproben dar. In den vergangenen Jahren wurde vermehrt eine neue Klasse von Krebsmedikamenten entwickelt, die sich das körpereigene Immunsystem zunutze macht, um den Krebs zu bekämpfen. Das Funktionieren dieser Medikamente hängt jedoch davon ab, ob bestimmte Immunzellen in der Umgebung des Tumors vorhanden sind. Auf Grundlage von Einzelzell RNA-Sequenzierungsdaten konnte eine existierende Methode so erweitert werden, dass nunmehr auch Proben von soliden Tumoren entschlüsselt werden können. Zudem wurden die Einflüsse von verschiedenen Faktoren, wie etwa der Gewebeherkunft oder dem verwendeten Algorithmus, systematisch ausgewertet. Zusammengefasst habe ich in dieser Arbeit dargestellt, wie prädiktive Computermodelle dazu verwendet werden können bestehende Behandlungsansätze zu verbessern und neue Wirkstoffkandidaten zu identifizieren. / Cancer and infectious diseases, such as influenza infection, represent major threats to the human population, especially since demographic change makes more and more people vulnerable. Mathematical modeling of disease covers several layers of detail ranging from epidemiological models for infection spread to cancer-associated signaling within individual cells. These models, when being calibrated to biological data, can provide useful means for generating hypothesis of priorly unknown interactions, predicting drug targets for novel therapeutic substances and for improving the understanding and efficient functioning of existing treatment strategies. In this thesis, I present several projects in which predictive computational models are utilized to gain deeper insights into the biological processes and to improve therapy of cancer and associated health problems. The first part highlights the importance of community-driven software development for systems biology applications. Efficient, yet expandable and open software continuously improves, driven by an active community of users and developers. In the second project, the intracellular processes during the early influenza A infection are investigated. Using a combination of experimental measurements and mathematical modeling, degradation of the viral genome during its diffusion through the cytoplasm could be identified as a limiting factor for a successful infection. By experimentally increasing the pH sensitivity of the viral hemagglutinin protein, the distance of diffusion was increased and the computationally predicted decrease in infectivity could be validated in experiment. The third project deals with cancer-associated health issues and their treatment. Patients suffering from anemia, caused by the cancer itself or as a side-effect of chemotherapy, are treated either with blood transfusions or with an erythropoiesis stimulating agent (ESA). By adapting a published model of ESA-EpoR interaction, not only the biochemical properties of different ESAs could be characterized in silico but also the number of binding sites (i.e. Epo receptors on the cell surface) in different cell lines was accurately determined. The model was extended by a pharmaco-kinetic and -dynamic part. The combined ESA-EpoR-PK/PD model could be utilized to retrospectively optimize the dosing regimen of patients suffering from anemia. In the last project, a computational method for analyzing and deciphering the cellular composition of bulk tumor samples is presented. Only recently, a new class of anti-cancer drugs was introduced recruiting the body’s own immune system to combat malignant tissue. However, the efficient functioning of these immunotherapeutical drugs heavily depends on the presence of specific immune cells in the tumor micro-environment. Based on single-cell RNA sequencing data, an existing method for computational deconvolution could be adapted for data from solid tumor tissue and its performance was benchmarked. Taken together, in this thesis I present approaches how predictive computational models can be utilized to render more efficient existing treatment strategies.
4

Parametrising kinetic models of biological networks

Borger, Simon 03 December 2009 (has links)
Systembiologie strebt danach, biologische Netzwerke dynamisch zu modellieren. Zwei Erfordernisse sind zuhierfür erfüllen. Erstens müssen die Interaktionsnetzwerke bekannt sein. Zweitens muss die Dynamik einerjeden Interaktion aufgedeckt werden. Die Dynamik von Interaktionen werden durch Ratengleichungen beschrieben unter Verwendung von Kinetiken. Diese Kinetiken beschreiben den Interaktionsmechanismus. Für jede einzelne Interaktion des Netzwerkes sind die Parameter durch das Experiment zu bestimmt. Für enzymkatalysierte Reaktionen zum Beispiel werden Messungen durchgeführt, in welchen der Verbrauch des Substrates aufgezeichnet wird. Für viele Enzyme jedoch sind weder der Mechanismus geschweige denn die Parameter bekannt. Und vorhandene Daten sind gewöhnlich von mangelhafter Qualität. Nach einer Einführung in die kinetische Modellierung metabolischer Netzwerke betrachten wir ein veröffentlichtes künstliches genetisches Netzwerk, das entweder einem stationären Zustand zustrebt oder in Abhängigkeit eines kritschen Parameters in einen dauerhaften Schwingungszustand übergeht. Dieser kritsche Parameter ist der Hillkoeffizient in der Wechselwirkung zwischen einem Gen und dem anderen. Für verschiedene Parameterwahlen untersuchen wir, bei welchemWert des Hillkoeffizienten eine Bifurkation auftritt. Auf diese Weise ermitteln wir die Verteilung des kritschen Parameters, der nicht analytisch berechnet werden kann. Wir fahren dann fort und untersuchen nützliche Datenquellen für die Parametrisierung von kinetischen Modellen metabolischer Netzwerke und sammelnsie in einer elektronischen Ressource, um sie auf elektronischem Wege zugänglich und nutzbar zu machen. Dies erfordert, Standardreferenzen zu wählen für die Benennung der Komponenten biologischer Netzwerke. Schließlich beschreiben wir einen Arbeitsablauf, während desselben die Datenbank verwendet wird zur Parametrisierung von kinetischen Modellen metabolischer Netzwerke. / Systems biology seeks to model biological networks dynamically. Two requirements need to be fulfilled for this to be possible. First, the interaction networks need to be known. Second, the dynamics of the interactions have to be revealed. Dynamics of interactions are described by rate laws using kinetics. These kinetics describe the interaction mechanism. For each single interaction occurring in a biological networkparameters have to specified. They have to be measured by experiments. For enzyme catalysed reactions, for example, the parameters are measured by enzyme assays tracking the consumption of substrate. For many enzymes parameters and kinetic mechanism are not known. And existing data for parameters generally are ofpoor quality. After introducing kinetic modelling of metabolic networks we consider a published artificial genetic network that can either tend to a steady state or exhibit sustained oscillations depending on a critical parameter. This critical parameter is the Hill coefficient in the interaction from one gene with the other. For different parameter settings we examine at what value of the Hill coefficient a bifurcation occurs. At this point the network begins to oscillate. We thus assess the distribution of the critical values, a property that cannot be calculated analytically. We then go on to consider useful data sources for parmetrisation of kinetic models of metabolic networks and collect them in an electronical resource to make them electronically accessible and usable. This requires choosing standard references for the designation of components of biological networks. Finally we describe a workflow in which this data resource is used for automatic parametrisation of kinetic models of metabolic networks.
5

Structural analysis of metabolic networks

Ebenhöh, Oliver 01 April 2003 (has links)
In der vorliegenden Arbeit werden zwei Modelle zur strukturellen Analyse von Stoffwechselsystemen vorgestellt. Die Untersuchung basiert auf der Hypothese, dass heutzutage vorzufindende Stoffwechselsysteme als Ergebnis einer evolutionären Entwicklung, bestimmt durch Mutationsmechanismen und natürlicher Selektion, angesehen werden können. Es kann daher angenommen werden, dass kinetische Parameter sowie strukturelle Eigenschaften im Laufe der Evolution solche Werte angenommen haben, die eine gewisse Optimalität bezüglich ihrer biologischen Funktion darstellen. Das erste Modell untersucht das strukturelle Design ATP und NADH produzierender Systeme, so wie die Glykolyse und der Zitratzyklus. Eine Methode wird präsentiert, die die Beschreibung hypothetischer, chemisch denkbarer, alternativer Stoffwechselwege ermöglicht. Diese Wege werden bezüglich ihrer Effizienz, ATP zu produzieren, untersucht. Es stellt sich heraus, dass die meisten möglichen Wege eine niedrige ATP-Produktionsrate aufweisen und dass die effizientesten Wege einige strukturelle Gemeinsamkeiten besitzen. Die Optimierung bezüglich der ATP-Produktionsrate wird mit einem evolutionären Algorithmus durchgeführt. Folgende Resultate stehen mit dem tatsächlichen Design der Glykolyse und des Zitratzyklus in Einklang: (i) In allen effizienten Wegen befinden sich die ATP-verbrauchenden Reaktionen am Anfang. (ii) In allen effizienten Wegen befinden sich die sowohl die NADH- als auch die ATP-produzierenden Reaktionen am Ende. (iii) Die Anzahl der NADH-Moleküle, die aus einem energiereichen Molekül (Glukose) produziert werden, beläuft sich in allen effizienten Wegen auf vier. Im zweiten Modell werden vollständige Mengen metabolischer Netzwerke konstruiert, wobei von Reaktionen ausgegangen wird, die Änderungen des Kohlenstoffskeletts der beteiligten Metabolite beschreiben. Elementare Netzwerke werden dadurch definiert, dass eine bestimmte chemische Umwandlung durchgeführt werden kann und dass diese Fähigkeit verloren geht, wenn eine der beteiligten Reaktionen ausgeschlossen wird. Übergänge zwischen Netzwerken und Mutationen werden durch den Austausch einer einzigen Reaktion definiert. Es existieren verschiedene Mutationen, solche bei denen Funktionen verloren gehen, welche dazugewonnen werden, und neutrale Mutationen. Mutationen definieren Nachbarschaftsrelationen, die graphentheoretisch beschrieben werden. Eigenschaften wie Durchmesser, Konnektivität und die Abstandsverteilung der Vertizes werden berechnet. Ein Konzept zur Quantifizierung der Robustheit von Netzwerken gegenüber stöchiometrischen Veränderungen wird entwickelt, wobei zwischen starker und schwacher Robustheit unterschieden wird. Evolutionäre Algorithmen werden angewandt, um die Entwicklung von Netzwerkpopulationen unter konstanten und zeitlich veränderlichen Umweltbedingungen zu untersuchen. Es wird gezeigt, dass Populationen sich zu Gruppierungen von Netzwerken hinentwickeln, die gemeinsame Funktionen besitzen und nah benachbart sind. Unter zeitlich veränderlichen Umweltbedingungen zeigt sich, dass multifunktionelle Netzwerke optimal sind und sich im Selektionsprozess durchsetzen. / In the present thesis two models are presented which study the structural design of metabolic systems. The investigation is based on the hypothesis that present day metabolic systems are the result of an evolutionary development governed by mutation mechanisms and natural selection principles. Therefore, it can be assumed that these parameters have reached, during the course of their evolution, values which imply certain optimal properties with respect to their biological function. The first model concerns the structural design of ATP and NADH producing systems such as glycolysis and the citric acid cycle. A method is presented to describe hypothetical, chemically feasible, alternative pathways. We analyse these pathways with respect to their capability to efficiently produce ATP. It is shown that most of the possible pathways result in a very low ATP production rate and that the very efficient pathways share common structural properties. Optimisation with respect to the ATP production rate is performed by an evolutionary algorithm. The following results of our analysis are in close correspondence to the real design of glycolysis and the TCA cycle: (i) In all efficient pathways the ATP consuming reactions are located near the beginning. (ii) In all efficient pathways NADH producing reactions as well as ATP producing reactions are located near the end. (iii) The number of NADH molecules produced by the consumption of one energy-rich molecule (glucose) amounts to four in all efficient pathways. In the second model complete sets of metabolic networks are constructed starting from a limited set of reactions describing changes in the carbon skeleton of biochemical compounds. Elementary networks are defined by the condition that a specific chemical conversion can be performed by a set of given reactions and that this ability will be lost by elimination of any of these reactions. Transitions between networks and mutations of networks are defined by exchanges of single reactions. Different mutations exist such as gain or loss of function mutations and neutral mutations. Based on these mutations neighbourhood relations between networks are established which are described in a graph theoretical way. Basic properties of these graphs are determined such as diameter, connectedness, distance distribution of pairs of vertices. A concept is developed to quantify the robustness of networks against changes in their stoichiometry where we distinguish between strong and weak robustness. Evolutionary algorithms are applied to study the development of network populations under constant and time dependent environmental conditions. It is shown that the populations evolve toward clusters of networks performing a common function and which are closely neighboured. Under changing environmental conditions multifunctional networks prove to be optimal and will be selected.
6

Computational analysis of transcriptional responses to the Activin signal

Shi, Dan 28 September 2020 (has links)
Die Signalwege des transformierenden Wachstumsfaktors β (TGF-β) spielen eine entscheidende Rolle bei der Zellproliferation, -migration und -apoptose durch die Aktivierung von Smad-Proteinen. Untersuchungen haben gezeigt, dass die biologischen Wirkungen des TGF-β-Signalwegs stark vom Zellkontext abhängen. In dieser Arbeit ging es darum zu verstehen, wie TGF-β-Signale Zielgene unterschiedlich regulieren können, wie unterschiedliche Dynamiken der Genexpression durch TGF-β-Signale induziert werden und auf welche Weise Smad-Proteine zu unterschiedlichen Expressionsmustern von TGF- β-Zielgenen beitragen. Der Fokus dieser Studie liegt auf den transkriptionsregulatorischen Effekten des Nodal / Activin-Liganden, der zur TGF-β-Superfamilie gehört und ein wichtiger Faktor in der frühen embryonalen Entwicklung ist. Um diese Effekte zu analysieren, habe ich kinetische Modelle entwickelt und mit den Zeitverlaufsdaten von RNA-Polymerase II (Pol II) und Smad2-Chromatin-Bindungsprofilen für die Zielgene kalibriert. Unter Verwendung des Akaike-Informationskriteriums (AIC) zur Bewertung verschiedener kinetischer Modelle stellten wir fest, dass der Nodal / Activin-Signalweg Zielgene über verschiedene Mechanismen reguliert. Im Nodal / Activin-Smad2-Signalweg spielt Smad2 für verschiedene Zielgene unterschiedliche regulatorische Rollen. Wir zeigen, wie Smad2 daran beteiligt ist, die Transkriptions- oder Abbaurate jedes Zielgens separat zu regulieren. Darüber hinaus werden eine Reihe von Merkmalen, die die Transkriptionsdynamik von Zielgenen vorhersagen können, durch logistische Regression ausgewählt. Der hier vorgestellte Ansatz liefert quantitative Beziehungen zwischen der Dynamik des Transkriptionsfaktors und den Transkriptionsantworten. Diese Arbeit bietet auch einen allgemeinen mathematischen Rahmen für die Untersuchung der Transkriptionsregulation anderer Signalwege. / Transforming growth factor-β (TGF-β) signaling pathways play a crucial role in cell proliferation, migration, and apoptosis through the activation of Smad proteins. Research has shown that the biological effects of TGF-β signaling pathway are highly cellular-context-dependent. In this thesis work, I aimed at understanding how TGF-β signaling can regulate target genes differently, how different dynamics of gene expressions are induced by TGF-β signal, and what is the role of Smad proteins in differing the profiles of target gene expression. In this study, I focused on the transcriptional responses to the Nodal/Activin ligand, which is a member of the TGF-β superfamily and a key regulator of early embryonic development. Kinetic models were developed and calibrated with the time course data of RNA polymerase II (Pol II) and Smad2 chromatin binding profiles for the target genes. Using the Akaike information criterion (AIC) to evaluate different kinetic models, we discovered that Nodal/Activin signaling regulates target genes via different mechanisms. In the Nodal/Activin-Smad2 signaling pathway, Smad2 plays different regulatory roles on different target genes. We show how Smad2 participates in regulating the transcription or degradation rate of each target gene separately. Moreover, a series of features that can predict the transcription dynamics of target genes are selected by logistic regression. The approach we present here provides quantitative relationships between transcription factor dynamics and transcriptional responses. This work also provides a general computational framework for studying the transcription regulations of other signaling pathways.
7

A mathematical model of ion homeostasis in the malaria parasite, Plasmodium falciparum

Diemer, Jorin 27 September 2023 (has links)
Jedes Jahr infizieren sich mehr als 200 Millionen Menschen mit Malaria. Eine halbe Millionen von ihnen verstirbt. Die Mehrzahl der Krankheits- und Todesfälle wird durch den Parasiten Plasmodium falciparum verursacht, einen von sechs Stämmen von Malariaparasiten, der Menschen infizieren kann. Der P. falciparum-Parasit hat in unterschiedlichem Maße Resistenzen gegen die meisten derzeit verwendeten Malariamittel entwickelt, und es besteht ein ständiger Bedarf an der Entwicklung neuer Malariamedikamente. Zwei Wirkstoffe, die sich derzeit in der klinischen Erprobung gegen Malaria befinden, zielen auf ’Ionenpumpen’ in der Oberflächenmembran des Malariaparasiten ab. Die Ionenregulation im Parasiten P. falciparum war in den letzten Jahrzehnten Gegenstand umfangreicher Forschung, welche zu einem allgemeinen Verständnis darüber geführt, wie der Parasit seine interne Ionenhaushalt reguliert. Es wurde jedoch noch nicht versucht, diese Erkenntnisse in ein quantitatives Modell zu integrieren. In dieser Arbeit habe ich ein mathematisches Modell für die Ionenhomöostase im asexuellen, intra-erythrozytären Stadium des Parasiten P. falciparum entwickelt. Das Modell bietet neue Einblicke in bisher unerklärte, experimentelle Beobachtungen und sagt die Wechselwirkungen von Ionentransport-Inhibitoren voraus. Das neu entwickelte Modell der Ionenregulation im Parasiten wurde in ein bereits bestehendes mathematisches Modell der Ionenregulation im Wirtserythrozyten integriert, um ein vorläufiges "kombiniertes Modell" des parasiteninfizierten Erythrozyten als Ganzes zu erstellen. Die Ergebnisse dieses kombinierten Modells wurden mit den Ergebnissen einer begrenzten Anzahl von Experimenten verglichen, die im Rahmen dieser Arbeit durchgeführt wurden. In diesen Experimenten wurde die Veränderung der infizierten Erythrozyten nach verschiedenen osmotischen Störungen gemessen. Die im Rahmen dieser Arbeit durchgeführte mathematische Modellierung trägt zum Verständnis der gegenseitigen Abhängigkeiten bei, die bei der Ionenregulierung des Malariaparasiten eine Rolle spielen, und bietet einen Rahmen für das Verständnis der Auswirkungen von "Ionentransport-hemmenden" Malariamitteln. / Malaria is currently responsible for more than 200 million estimated cases and half a million deaths annually, with the majority of cases and deaths attributable to Plasmodium falciparum, one of six strains of malaria parasite able to infect humans. The P. falciparum parasite has developed varying degrees of resistance against most, if not all, of the antimalarial drugs currently available and there is an ongoing need to develop new antimalarial agents. Two compounds, which are currently in clinical trials against malaria target an ’ion pump’ on the surface membrane of the malaria parasite. Ion regulation in the P. falciparum parasite has been the subject of extensive studies over recent decades. This research has led to a general understanding of how the parasite regulates its internal ionic composition. However, there has not yet been any attempt to integrate these findings into a quantitative model. In the work presented in this thesis, I have developed a mathematical model for ion homeostasis in the asexual intra-erythrocytic blood-stage of the P. falciparum parasite. The model provides new insights into formerly unexplained in vitro observations and predicts interactions of ion transport inhibitors. The newly formulated model of ion regulation in the parasite was integrated with a pre-existing mathematical model for ion regulation in the host erythrocyte to generate a preliminary ’combined model’ of the parasite-infected erythrocyte as a whole. Outputs from this combined model were compared to the results from a limited number of experiments conducted in the course of this thesis. These experiments entailed measuring the change of infected erythrocytes following different osmotic perturbations. The mathematical modelling conducted in the course of this work adds to the understanding of the interdependencies involved in malaria parasite ion regulation and provides a framework to help understand the effects of ’ion-transport-inhibiting’ antimalarial agents.
8

From Parts to the Whole / A Whole-Cell Model for Saccharomyces cerevisiae

Hahn, Jens 06 July 2020 (has links)
Die Durchführung von Experimenten und das mathematische Modellieren von zellulären Prozessen gehören in der Systembiologie untrennbar zusammen. Das gemeinsame Ziel ist die Aufklärung des Zusammenspiels intrazellulärer Prozesse wie Metabolismus, Genexpression oder Signaltransduktion. Während sich molekularbiologische Untersuchungen mit den molekularen Mechanismen einzelner isolierter Systeme beschäftigen, zielt die Systembiologie auf die Aufklärung der Zusammenhänge ganzer Prozesse und schließlich auch ganzer Zellen ab. Die Verfügbarkeit von umfangreichen Datensätzen und die steigenden Möglichkeiten im Bereich der Computersimulation haben in den letzten Jahren den Weg geebnet, um auch Ganzzellsimulationen nicht mehr unmöglich erscheinen zu lassen. Diese Arbeit stellt das erste eukaryotische Ganzzellmodell der Bäckerhefe Saccharomyces cerevisiae vor. Hefe als eukaryotischer Modellorganismus ist hierbei der perfekte Kandidat für die Erstellung eines solchen Modells. Er bietet, als wohl meist erforschter eukaryotischer Einzeller in Verbindung mit der Verfügbarkeit einer großen Menge experimenteller Daten, beste Voraussetzungen zur Erstellung eines solchen Modells. Das Projekt ist hierbei in drei Teile gegliedert: i) Die Erstellung eines modularen Ganzzellmodells das alle zellulären Funktionen wie Zellzyklus, Genexpression, Metabolismus, Transport und Wachstum abbildet. ii) Die Implementation einer spezialisierten Simulationsumgebung in Verbindung mit einer Datenbank, um die Erstellung, Simulation und Parametrisierung von Modulen zu ermöglichen. iii) Die Durchführung von Experimenten, um einen ganzheitlichen Datensatz zu erlangen, der Wachstum, Genexpression und Metabolismus abbildet. Die hier vorgestellte Arbeit liefert nicht nur ein mathematisches Modell, sondern benennt auch die Herausforderungen, die während der Arbeit an einem Ganzzellmodell auftreten und stellt mögliche Lösungsansätze vor. / In systems biology experiments and mathematical modeling are going hand in hand to gain and increase understanding of cellular processes like metabolism, gene expression, or signaling pathways. While molecular biology investigates single isolated parts and molecular mechanisms of cellular processes, systems biology aims at unraveling the whole process and ultimately whole organisms. Today the availability of comprehensive high-throughput data and computational power paved the way to increase the size of analyzed systems to reach the cellular level. This thesis presents the first whole-cell model (WCM) of a eukaryotic cell, the yeast Saccharomyces cerevisiae. This established model organism is the perfect candidate for the implementation of a holistic model based on the available experimental data and the accumulated biological knowledge. The project is split into three parts: i) The creation of a modular functional-complete whole-cell model, combining the processes cell cycle, gene expression, metabolism, transport, and growth. ii) The implementation of a specialized simulation environment and a database to support module creation, simulation, and parameterization. iii) The elicitation of experimental data by conducting an experiment to achieve a comprehensive data set for parameterization, combining growth, metabolic, proteomic, and transcriptomic data. The presented work provides not only a simple mathematical model but also addresses challenges occurring during the development of whole-cell models and names possible solutions and new methodologies required for the creation of WCMs.
9

Identification and Characterization of miRNA regulatory networks

Filipchyk, Andrei 27 September 2019 (has links)
Post-transkriptionelle Genregulation ist ein zentraler Mechanismus, den lebende Organismen nutzen, um Funktionalität, Entwicklung und Anpassung zu gewährleisten. Defizite in diesem Mechanismus haben zahlreiche Krankheiten und Fehlfunktionen zur Folge. Post-transkriptionelle Genregulation wird von RNA-bindenden Proteinen (RBPs) ausgeführt. Ihr kombinatorisches Agieren ermöglicht eine genau abgestimmte Kontrolle räumlicher und zeitlicher Genexpression. Ein RBP erkennt seine Zielmoleküle typischerweise anhand sogenannter Bindemotive: Nukleotidsequenzen, die kompatibel sind mit einer Aminosäuretasche innerhalb des Proteins. Es gibt jedoch einen Sonderfall der Zielmolekülerkennung, der überRNAs, insbesondere microRNAs (miRNAs), vermittelt wird. miRNAs sind im Genom kodierte 20-25 Nukleotid lange RNAs, die in Argonaut (Ago)-Proteine geladen werden können, um diese zu ihren Zielmolekülen (z.B mRNAs) zu navigieren. Es wird angenommen, dass miRNA:Ago-Komplexe nahezu alle zellulären Prozesse kontrollieren. Dementsprechend werden miRNA-Fehlfunktionen (z.B. verursacht durch Mutation nur eines einzelnen Nukleotids in einer Bindestelle) mit zahlreichen Erkrankungen in Verbindung gebracht. Die Charakterisierung aller miRNA-Zielmoleküle („miRNA targetome“) ist eine der wichtigsten Fragen, die mithilfe der Systembiologie adressiert werden kann. / Post-transcriptional gene regulation is a key mechanism exploited by living organisms to ensure their functionality, development and adaptation. Deficiencies in this mechanism lead to various diseases and malfunctions. Post-transcriptional gene regulation is exerted by RNA-binding proteins (RBPs). Their combinatorial action allows fine-tuned control over spatial and temporal gene expression to meet the actual cell demands. An RBP typically recognizes its targets via so called binding motifs: nucleotide sequences compatible with an amino-acid pocket inside the protein. However, there is a special case of target recognition guided by RNAs. In particular, micro RNAs(miRNAs) – 20-25 nucleotide long transcripts encoded in the genome–can be loaded into Argonaute (Ago) proteins to navigate them to their target RNAs. It is estimated that miRNA:Ago complexes control virtually all processes occurring in the cell. Consequently, malfunctions in the miRNA pathway (including even a single nucleotide mutation in a binding site) are implicated in multiple disorders. Therefore, the characterization of the “miRNA targetome” is one of the most important questions addressed to the systems biology
10

Models of spatial representation in the medial entorhinal cortex

D'Albis, Tiziano 23 July 2018 (has links)
Komplexe kognitive Funktionen wie Gedächtnisbildung, Navigation und Entscheidungsprozesse hängen von der Kommunikation zwischen Hippocampus und Neokortex ab. An der Schnittstelle dieser beiden Gehirnregionen liegt der entorhinale Kortex - ein Areal, das Neurone mit bemerkenswerten räumlichen Repräsentationen enthält: Gitterzellen. Gitterzellen sind Neurone, die abhängig von der Position eines Tieres in seiner Umgebung feuern und deren Feuerfelder ein dreieckiges Muster bilden. Man vermutet, dass Gitterzellen Navigation und räumliches Gedächtnis unterstützen, aber die Mechanismen, die diese Muster erzeugen, sind noch immer unbekannt. In dieser Dissertation untersuche ich mathematische Modelle neuronaler Schaltkreise, um die Entstehung, Weitervererbung und Verstärkung von Gitterzellaktivität zu erklären. Zuerst konzentriere ich mich auf die Entstehung von Gittermustern. Ich folge der Idee, dass periodische Repräsentationen des Raumes durch Konkurrenz zwischen dauerhaft aktiven, räumlichen Inputs und der Tendenz eines Neurons, durchgängiges Feuern zu vermeiden, entstehen könnten. Aufbauend auf vorangegangenen theoretischen Arbeiten stelle ich ein Einzelzell-Modell vor, das gitterartige Aktivität allein durch räumlich-irreguläre Inputs, Feuerratenadaptation und Hebbsche synaptische Plastizität erzeugt. Im zweiten Teil der Dissertation untersuche ich den Einfluss von Netzwerkdynamik auf das Gitter-Tuning. Ich zeige, dass Gittermuster zwischen neuronalen Populationen weitervererbt werden können und dass sowohl vorwärts gerichtete als auch rekurrente Verbindungen die Regelmäßigkeit von räumlichen Feuermustern verbessern können. Schließlich zeige ich, dass eine entsprechende Konnektivität, die diese Funktionen unterstützt, auf unüberwachte Weise entstehen könnte. Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Prinzipien der neuronalen Repräsentation des Raumes im medialen entorhinalen Kortex bei. / High-level cognitive abilities such as memory, navigation, and decision making rely on the communication between the hippocampal formation and the neocortex. At the interface between these two brain regions is the entorhinal cortex, a multimodal association area where neurons with remarkable representations of self-location have been discovered: the grid cells. Grid cells are neurons that fire according to the position of an animal in its environment and whose firing fields form a periodic triangular pattern. Grid cells are thought to support animal's navigation and spatial memory, but the cellular mechanisms that generate their tuning are still unknown. In this thesis, I study computational models of neural circuits to explain the emergence, inheritance, and amplification of grid-cell activity. In the first part of the thesis, I focus on the initial formation of grid-cell tuning. I embrace the idea that periodic representations of space could emerge via a competition between persistently-active spatial inputs and the reluctance of a neuron to fire for long stretches of time. Building upon previous theoretical work, I propose a single-cell model that generates grid-like activity solely form spatially-irregular inputs, spike-rate adaptation, and Hebbian synaptic plasticity. In the second part of the thesis, I study the inheritance and amplification of grid-cell activity. Motivated by the architecture of entorhinal microcircuits, I investigate how feed-forward and recurrent connections affect grid-cell tuning. I show that grids can be inherited across neuronal populations, and that both feed-forward and recurrent connections can improve the regularity of spatial firing. Finally, I show that a connectivity supporting these functions could self-organize in an unsupervised manner. Altogether, this thesis contributes to a better understanding of the principles governing the neuronal representation of space in the medial entorhinal cortex.

Page generated in 0.0167 seconds