• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cortical circuits underlying social and spatial exploration in rats

Ebbesen, Christian Laut 19 June 2018 (has links)
Um zu verstehen, wie das Gehirn von Säugetieren funktioniert, untersuchen wir wie neuronale Aktivität einerseits zu Kognition beträgt und andererseits komplexe Verhaltensweisen ermöglicht. Im Fokus dieser Doktorarbeit stehen dabei zwei Regionen der Großhirnrinde der Ratte: der parahippocampale Cortex und der motorische Cortex. Im ersten Teil haben wir neuronale Schaltkreise im parahippocampalen Cortex und in den oberen Schichten des enthorhinalen Cortex untersucht, während Ratten ihre Umgebung räumlich erkunden. Diese beiden Regionen tragen wesentlich zum Orientierungssinn bei. Dabei haben wir herausgefunden, dass anatomische Identität und Einbindung in den Microschaltkreis einerseits räumliche neuronale Signale, wie zum Beispiel der Aktivität von grid cells, border cells und head-direction cells, bestimmen. Andererseits tragen diese beiden Eigenschaften auch zur temporalen Präzision neuronaler Signale bei, wie zum Beispiel in Form von spike bursts, theta Modulation und phase precession. Im zweiten Teil dieser Doktorarbeit untersuchen wir die Aktivität von Neuronen im Vibrissen Motorcortex während komplexer Bewegungsabläufe der Schnurrhaare, die dem natürlichen Repertoire der Ratte entstammen: eigeninitiierte Bewegungen in freier Luft, Berührung von Artgenossen zur sozialen Interaktion und das Abtasten von Objekten. Dabei haben wir herausgefunden, dass neuronale Aktivität im Motorcortex während der Bewegung der Schnurrhaare unterdrückt ist, dass elektrische Microstimulation zum Rückzug der Schnurrhaare führt und, dass pharmakologische Blockade Bewegung der Schnurrhaare fördert. Um diese überraschende Beobachtung in einen breiteren Kontext zu integrieren, endet dieser Teil mit einer Bewertung der Literatur zu der bewegungsunterdrückenden Wirkung von Motorcortex Aktivität bei Nagetieren, Primaten und Menschen. / In order to understand how the mammalian brain works, we must investigate how neural activity contributes to cognition and generates complex behavioral output. In this thesis I present work, which focuses on two regions of the cerebral cortex of rats: parahippocampal cortex and motor cortex. In the first part of the thesis we investigate neural circuits in the parasubiculum and the superficial medial enthorhinal cortex, two structures that play a key role in spatial cognition. Briefly, we find that the in these regions, anatomical identity and microcircuit embedding is a major determinant of both spatial discharge patterns (such as the discharge patterns of grid cells, border cells and head-direction cells) and temporal coding features (such as spike bursts, theta-modulation and phase precession). In the second part of the thesis we investigate the activity of neurons in vibrissa motor cortex during complex motor behaviors, which play a vital role in rat ecology: self-initiated bouts of exploratory whisking in air, whisking to touch conspecifics during social interactions and whisking to palpate objects. Briefly, we find that neural activity decreases during whisking behaviors, that microstimulation leads to whisker retraction and that pharmacological blockade increases whisker movement. Thus, our observations collectively suggest that a primary role of vibrissa motor cortex activity is to suppress whisking behaviors. The second part of the thesis concludes with a literature review of motor suppressive effects of motor cortical activity across rodents, primates and humans to put this unexpected finding in a broader context.
2

Neural bases of navigation in foraging and play

Sanguinetti Scheck, Juan Ignacio 19 November 2019 (has links)
Für die meisten Säugetiere ist Navigation eine essentielle kognitive Fähigkeit. Im Bereich der Neurowissenschaften gab es immense Fortschritte im Verständnis neuronaler Grundlagen von Navigation. Diese Dissertation beschäftigt sich mit der neuronalen Grundlage von Navigation im Hinblick auf Hirnstruktur (d.h. Parasubikulum) und ethologisch relevante Verhaltensweisen (d.h. Heimkehr und Spielverhalten). Im ersten Kapitel konzentriere ich mich auf das Verhältnis von Struktur und Funktion im Parasubikulum. Wir postulieren, dass das Parasubikulum durch seine selektive Vernetzung mit dem entorhinalen Kortex, durch seine starke interne Konnektivität, sowie wegen dem hohen Grad räumlich selektiver Aktivitätsmuster seiner Neurone im Bezug auf die Kontrolle von Gitterzellaktivität und räumlicher Navigation eine herausragende Stellung einnimmt. Im zweiten Kapitel untersuche ich die neuronale Grundlage von Heimkehr. Wir nutzen die starke Verbundenheit von Laborratten zu ihrem Zuhause. Wir zeigen, dass das Parasubikulum und der entorhinale Kortex keinen expliziten Heimvektor besitzen und dass die Präsenz des Zuhauses keine globale Veränderung der neuralen Repräsentation des Raums hervorruft. Allerdings führte die Präsenz des Zuhauses oder anderer geometrischer Objekte zu einer Verzerrung von Gitterzellen. Im dritten Kapitel unteruche ich Navigation im Hinblick auf Spielverhalten. Ratten erlernen das Versteckspiel schnell und verhalten sich erstaunlich regelkonform. Zeigen Ratten spielspezifische Vokalisationen. Gleichzeitige Ableitungen neuronaler Aktivität im medialen präfrontalen Kortex offenbarten starke und spezifische Antworten der meisten Nervenzellen auf verschiedene Phasen des Spiels des spezifischen Spielkontextes wiederspiegeln. Diese Arbeit liefert durch ihren ethologischen Ansatz und durch Verhaltensanalysen von sich frei verhaltenden Tieren einen wichtigen Beitrag zum besseren Verständnis neuronaler Grundlagen von Navigation im Säugetiergehirn. / Navigation is an essential cognitive skill in the life of most animals. Animals move along space to procure the advantages of different places in the environment, and to adapt to ever changing resources, dangers and needs. This thesis addresses the neural bases of navigation in the context of brain structure (i.e. the parasubiculum) and ethologically relevant behaviors (i.e. homing and playing). In the first chapter I focus on the structure function relation of the parasubiculum: an understudied area of the rat’s parahippocampal cortex. We performed the most comprehensive study of the parasubiculum up to date and propose that, because of its selective connectivity with the medial entorhinal cortex, its internal connectivity, and the high spatial and head directional tuning of its neurons, the parasubiculum sits in remarkable position to control grid cell activity and navigation. In the second chapter, I study the neural bases of homing. We use the lab-rat' s strong attachment to its home cage to study whether brains maintain an online home vector. We show, that the parasubiculum and medial entorhinal cortex do not have an explicit home vector representation, and that the presence of home did not affect global encoding of space. However, we do find that grid cells are distorted by the home or other geometrical features affecting the internal environment. In the third chapter, I study navigation in an interspecies role-playing game. We played 'Hide and Seek' with rats and found that they acquired the game easily and played by the rules. Rats were strategic and developed game specific vocalizations patterns. We recorded from the medial prefrontal cortex and found that neurons respond sharply to different phases of the game, and may encode as well the context in which this events take place. By emphasizing ethological approaches and free behaviors this thesis contributes to an increased understanding of the neural underpinnings of navigation in the mammalian brain.
3

Models of spatial representation in the medial entorhinal cortex

D'Albis, Tiziano 23 July 2018 (has links)
Komplexe kognitive Funktionen wie Gedächtnisbildung, Navigation und Entscheidungsprozesse hängen von der Kommunikation zwischen Hippocampus und Neokortex ab. An der Schnittstelle dieser beiden Gehirnregionen liegt der entorhinale Kortex - ein Areal, das Neurone mit bemerkenswerten räumlichen Repräsentationen enthält: Gitterzellen. Gitterzellen sind Neurone, die abhängig von der Position eines Tieres in seiner Umgebung feuern und deren Feuerfelder ein dreieckiges Muster bilden. Man vermutet, dass Gitterzellen Navigation und räumliches Gedächtnis unterstützen, aber die Mechanismen, die diese Muster erzeugen, sind noch immer unbekannt. In dieser Dissertation untersuche ich mathematische Modelle neuronaler Schaltkreise, um die Entstehung, Weitervererbung und Verstärkung von Gitterzellaktivität zu erklären. Zuerst konzentriere ich mich auf die Entstehung von Gittermustern. Ich folge der Idee, dass periodische Repräsentationen des Raumes durch Konkurrenz zwischen dauerhaft aktiven, räumlichen Inputs und der Tendenz eines Neurons, durchgängiges Feuern zu vermeiden, entstehen könnten. Aufbauend auf vorangegangenen theoretischen Arbeiten stelle ich ein Einzelzell-Modell vor, das gitterartige Aktivität allein durch räumlich-irreguläre Inputs, Feuerratenadaptation und Hebbsche synaptische Plastizität erzeugt. Im zweiten Teil der Dissertation untersuche ich den Einfluss von Netzwerkdynamik auf das Gitter-Tuning. Ich zeige, dass Gittermuster zwischen neuronalen Populationen weitervererbt werden können und dass sowohl vorwärts gerichtete als auch rekurrente Verbindungen die Regelmäßigkeit von räumlichen Feuermustern verbessern können. Schließlich zeige ich, dass eine entsprechende Konnektivität, die diese Funktionen unterstützt, auf unüberwachte Weise entstehen könnte. Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Prinzipien der neuronalen Repräsentation des Raumes im medialen entorhinalen Kortex bei. / High-level cognitive abilities such as memory, navigation, and decision making rely on the communication between the hippocampal formation and the neocortex. At the interface between these two brain regions is the entorhinal cortex, a multimodal association area where neurons with remarkable representations of self-location have been discovered: the grid cells. Grid cells are neurons that fire according to the position of an animal in its environment and whose firing fields form a periodic triangular pattern. Grid cells are thought to support animal's navigation and spatial memory, but the cellular mechanisms that generate their tuning are still unknown. In this thesis, I study computational models of neural circuits to explain the emergence, inheritance, and amplification of grid-cell activity. In the first part of the thesis, I focus on the initial formation of grid-cell tuning. I embrace the idea that periodic representations of space could emerge via a competition between persistently-active spatial inputs and the reluctance of a neuron to fire for long stretches of time. Building upon previous theoretical work, I propose a single-cell model that generates grid-like activity solely form spatially-irregular inputs, spike-rate adaptation, and Hebbian synaptic plasticity. In the second part of the thesis, I study the inheritance and amplification of grid-cell activity. Motivated by the architecture of entorhinal microcircuits, I investigate how feed-forward and recurrent connections affect grid-cell tuning. I show that grids can be inherited across neuronal populations, and that both feed-forward and recurrent connections can improve the regularity of spatial firing. Finally, I show that a connectivity supporting these functions could self-organize in an unsupervised manner. Altogether, this thesis contributes to a better understanding of the principles governing the neuronal representation of space in the medial entorhinal cortex.
4

Function of interneuronal gap junctions in hippocampal sharp wave-ripples

Holzbecher, André Jörg 29 August 2018 (has links)
Eine einzigartige experimentelle Beobachtung, welche die Basis für eine ganzheitliche, neurowissentschafliche Theorie für Gedächtnis darstellen könnte, sind sharp wave-ripples (SWRs). SWRs werden in lokalen Neuronennetzwerken erzeugt und sind wichtig für Gedächtniskonsolidierung; SWRs sind charakteristische Ereignisse der lokalen Feldpotentiale im Hippocampus des Säugetiers, die in Phasen von Schlaf und Ruhe vorkommen. Eine SWR besteht aus einer sharp wave, einer ≈ 100 ms langen Auslenkung des Feldpotentials, welche mit ripples, 110–250 Hz Oszillationen, überlagert ist. Jüngste Experimente bekräftigen die Theorie, dass ripples in Netzwerken inhibitorischer Interneurone (INT-INT) erzeugt werden, die aus parvalbumin-positive basket cells (PV+BCs) bestehen. PV+BCs sind untereinander über rekurrente inhibitorische Synapsen und Gap Junctions (GJs) gekoppelt. In dieser Arbeit untersuche ich die spezifische Funktion von interneuronalen Gap Junctions in ripples. Im Hauptteil dieser Arbeit demonstriere ich, dass GJs in INT-INT Netzwerken die neuronale Synchronität und die Feuerrate während ripples erhöhen, die ripple-Frequenz sich hingegen nur leicht verändert. Zusätzlich zeige ich, dass diese rippleunterstützenden Effekte nur dann auftreten, wenn die GJ-Transmission schnell genug ist (≈< 0.5 ms), was wiederum somanahe Kopplung voraussetzt (≈< 100 µm). Darüber hinaus zeige ich, dass GJs die oszillatorische Stärke der ripples erhöhen und so die minimale für ripples notwendige Netzwerkgröße verringern. Abschließend zeige ich, dass ausschließlich mit Gap Junctions gekoppelte INT-INT Netzwerke zwar mit ripple Frequenz oszillieren können, aber wahrscheinlich nicht der Erzeuger von experimentell beobachteten ripple-artigen Oszillationen sind. Zusammengenommen zeigen meine Resultate, dass schnelle Gap Junction-Kopplung von Interneuronen die Entstehung von ripples begünstigt und somit SWRs unterstützt, welche einen wichtigen Beitrag zur Bildung unserers Gedächtnisses leisten. / A unique experimental observation that opens ways for a holistic, bottom-up theory for memory generation are sharp-wave ripples (SWRs). SWRs are generated in local neuronal networks and are important for memory consolidation. SWRs are prominent features of the extracellular field potentials in the mammalian hippocampus that occur during rest and sleep; they are characterized by sharp waves, ≈ 100 ms long voltage deflections, that are accompanied by ripples, i.e., 110–250 Hz oscillations. Recent experiments support the view that ripples are clocked by recurrent networks of inhibitory interneurons (INT-INT), which are likely constituted by networks of parvalbumin-positive basket cells (PV+BCs). PV+BCs are not only recurrently coupled by inhibition but also by gap junctions (GJs). In this thesis, I investigate the specific function of interneuronal GJs in hippocampal ripples. Consequently, I simulate INT-INT networks and demonstrate that gap junctions increase the neuronal synchrony and firing rates during ripple oscillations, while the ripple frequency is only affected mildly. I further show that GJs only have these supporting effects on ripples when they are sufficiently fast (≈< 0.5 ms), which requires proximal GJ coupling (≈< 100 µm). Additionally, I find that gap junctions increase the oscillatory power of ripple oscillations and by this means reduce the minimal network size required for INT-INT networks to generate ripple oscillations. Finally, I demonstrate that exclusively GJ-coupled INT-INT networks can oscillate at ripple frequency, however, are unlikely the generator of experimentally observed ripple-like oscillations. In sum, my results show that fast interneuronal gap junction coupling promotes the emergence of ripples and hereby supports SWRs, which are important for the formation of memory.

Page generated in 0.0154 seconds