Cette thèse se propose de comprendre la formation de structures dans les équations de champs neuronaux en présence de symétrie ainsi que la conséquence pour la modélisation du cortex visuel. Les équations de champs neuronaux sont des modèles mésoscopiques qui décrivent l'activité spatio-temporelle de populations de neurones. Elles ont été introduites dans les années 1970 et sont souvent appelées les équations de Wilson-Cowan-Amari en référence à leurs auteurs. D'un point de vue mathématique, les équations de champs neuronaux sont des équations intégro-différentielles posées sur des domaines qui dépendent des propriétés anatomiques et/ou fonctionnelles modélisées. Dans la première partie, nous rappelons quelques éléments de biologie du cortex visuel, dérivons les équations de champs neuronaux de manière générale et introduisons ensuite une nouvelle classe de champs neuronaux pour le problème de modélisation de la perception des textures. La seconde partie de cette thèse est dédiée à l'étude de formation de structures en géométrie non-euclidienne et s'appuie principalement sur la théorie des systèmes dynamiques en dimension infinie en présence de symétrie. Cette seconde partie est relativement indépendante des autres et est écrite de manière suffisamment générale pour pouvoir être appliquée de façon systématique à tout problème de formation de structures en géométrie non-euclidienne satisfaisant certaines conditions de généricité. Enfin, dans la dernière partie, nous étudions l'existence de solutions localisées pour une certaine classe de champs neuronaux définis sur des domaines non bornés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00850269 |
Date | 11 June 2012 |
Creators | Faye, Grégory |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds