Return to search

G/C tracts and genome instability in Caenorhabditis elegans

The integrity of the genome is critical to organisms and it is affected by many factors. Radiation, for example, poses a serious threat to genome stability of human beings. While physical monitors for radiation hazard are present, the biological consequences of long term exposure to radiation are not well understood. With the opportunity as part of the International Caenorhabditis elegans Experiment-1 flight project, several approaches using C. elegans were taken to measure mutational changes that occurred during the spaceflight. Among these methods, the eT1 balancer system was demonstrated to be well-suited as an integrating biological dosimeter for spaceflight.
The dog-1 gene in C. elegans is required to prevent mutations at poly-G/poly-C tracts, and previous work has described that in the absence of DOG-1, small deletions initiate within these tracts, most likely as a consequence of improperly repaired replication blocks. The eT1 balancer system was adapted to investigate the broad mutational spectrum of dog-1 mutants. Using this system, I was able to determine a forward mutation rate of approximately 1 x 10-3, 10 fold higher than spontaneous. Both small deletions as reported previously and unreported large chromosome rearrangements were observed, and most of mutations analyzed are associated with G/C tracts. Thus, I propose that following dog-1-induced replication blocks, repair leads to a wide range of mutational events and chromosomal instabilities, similar to those seen in human cancers.
The existence of the G/C tracts in C. elegans creates a fortuitous but perplexing problem. They are hotspots for genome instability and need enzymatic protection. In the genome of C. elegans, approximately 400 G/C tracts exist and are distributed along every chromosome in a non-random pattern. G/C tracts are also over-represented in another Caenorhabditis species, C. briggsae. However, the positions and distribution differ from those in C. elegans. Furthermore, in C. elegans, analysis of SAGE data showed that the position of the G/C tracts correlated with the level of gene expression. Although being a threat to genome stability, the genomic distribution of G/C tracts in C. elegans and their effect on regional transcription levels suggest a role for G/C tracts in chromatin structure. / Medicine, Faculty of / Medical Genetics, Department of / Graduate

  1. http://hdl.handle.net/2429/936
Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/936
Date11 1900
CreatorsZhao, Yang
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format4388019 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0022 seconds