1 |
DNA repair and recombination in Streptomyces coelicolorBlance, Stephen J. January 1999 (has links)
No description available.
|
2 |
USP11 controls R-loops by regulating senataxin proteostasisJurga, Mateusz, Abugable, A.A., Goldman, Alastair S.H., El-Khamisy, Sherif 15 September 2021 (has links)
Yes / R-loops are by-products of transcription that must be tightly regulated to maintain genomic
stability and gene expression. Here, we describe a mechanism for the regulation of the Rloop-
specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11
(USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX
K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels
and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via
compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11
reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of
the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1
increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation.
These data define a ubiquitination-dependent mechanism for SETX regulation, which is
controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer
and neurological disease. / Wellcome Trust Investigator Award, Lister Institute of Preventative Medicine Fellowship
|
3 |
Topoisomerase 1 (Top1)-associated Genome Instability in Yeast: Effects of Persistent Cleavage Complexes or Increased Top1 LevelsSloan, Roketa Shanell January 2016 (has links)
<p>Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. Top1 cleaves one strand of DNA, covalently associates with the 3’ end of the nick to form a Top1-cleavage complex (Top1cc), passes the intact strand through the nick and finally re-ligates the broken strand. The chemotherapeutic drug, Camptothecin, intercalates at a Top1cc and prevents the crucial re-ligation reaction that is mediated by Top1, resulting in the conversion of a nick to a toxic double-strand break during DNA replication or the accumulation of Top1cc. This mechanism of action preferentially targets rapidly dividing tumor cells, but can also affect non-tumor cells when patients undergo treatment. Additionally, Top1 is found to be elevated in numerous tumor tissues making it an attractive target for anticancer therapies. We investigated the effects of Top1 on genome stability, effects of persistent Top1-cleavage complexes and elevated Top1 levels, in Saccharomyces cerevisiae. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in reciprocal crossovers, three- to fifteen fold increase in mutagenesis and greatly increased instability within the rDNA and CUP1 tandem arrays. Increased Top1 levels resulted in a fifteen- to twenty-two fold increase in mutagenesis and increased instability in rDNA locus. These results have important implications for understanding the effects of CPT and elevated Top1 levels as a chemotherapeutic agent.</p> / Dissertation
|
4 |
Cell-lineage-specific chromosomal instability in condensin II mutant miceWoodward, Jessica Christina January 2016 (has links)
In order to equally segregate their genetic material into daughter cells during mitosis, it is essential that chromosomes undergo major restructuring to facilitate compaction. However, the process of transforming diffuse, entangled interphase chromatin into discrete, highly organised chromosomal structures is extremely complex, and currently not completely understood. The complexes involved in chromatin compaction and sister chromatid decatenation in preparation for mitosis include condensins I and II. Mutations in condensin subunits have been identified in human tumours, reflecting the importance of accurate cell division in the prevention of aneuploidy and tumour formation. Most mutations described in TCGA (The Cancer Genome Atlas) and COSMIC (Catalogue of Somatic Mutations in Cancer) are missense, and therefore likely to only partially affect condensin function. Most functional genetic studies of condensin, however, have used loss of function systems, which typically cause severe chromosome segregation defects and cell death. Mice carrying global hypomorphic mutations within the kleisin subunit of the condensin II complex develop T cell lymphomas. The Caph2nes/nes mouse model is therefore a good system for understanding how condensin dysfunction can influence tumourigenesis. However, little is known about which cellular processes are affected in mutant cells before transformation. I therefore set out to use the Caph2nes/nes mouse model to study the consequences of the condensin II deficiency on cell cycle regulation in several different hematopoietic lineages. The Caph2nes/nes mice are viable and fertile, with no obvious abnormalities other than the thymus, which is drastically reduced in size. Previous studies reported greater than a hundred-fold reduction in the number of CD4+ CD8+ thymocytes. I set out to understand why the alteration of a ubiquitously expressed protein which functions in a fundamental cellular process would result in such a cell-type specific block in development. To achieve this, I investigated the possibility that condensin II is involved in interphase processes as well as in mitosis. In addition, I studied the aspects of T cell development that may make this lineage particularly vulnerable to condensin II deficiency. Finally, I carried out a preliminary investigation into the biochemical properties of the condensin complexes. During my PhD., I found strong evidence to suggest that the Caph2nes/nes T cell-specific phenotype arises due to abnormal cell division. However, I was unable to find any evidence to support the hypothesis that the phenotype is a consequence of abnormal interphase processes. Upon systematic analysis of several stages of hematopoietic differentiation, I found that at a specific stage of T cell development, the mutation results in an increased proportion of cells with abnormal ploidy, followed by a drastic reduction in cell numbers. Erythroid cells revealed a similar increase in the frequency of hyperdiploid cells, but no reduction in cell numbers. B cells and hematopoietic precursors did not reveal an increase in hyperdiploidy, or a reduction in cell numbers in wildtype relative to mutant. Subsequently, I found preliminary evidence to suggest that the T cell-specificity may be due to more rapid progression of CD4+ CD8+ T cells from S phase to M phase, relative to other hematopoietic stages. Finally, a preliminary investigation into the biochemical properties of the condensin complex revealed apparent imbalances in the expression of condensin subunits in T, B and erythroid cells. The sedimentation profile of CAP-H2 from whole-thymus extract did not exclude the possibility that condensin subunits might be forming heavier-weight complexes with non-SMC proteins. Further work must be carried out to determine whether this sedimentation pattern is unique to T cells.
|
5 |
The Mechanism of Mitotic Recombination in YeastLee, Phoebe S. January 2010 (has links)
<p>A mitotically dividing cell regularly experiences DNA damage including double-stranded DNA breaks (DSBs). Homologous mitotic recombination is an important mechanism for the repair of DSBs, but inappropriate repair of DNA breaks can lead to genome instability. Despite more than 70 years of research, the mechanism of mitotic recombination is still not understood. By genetic and physical studies in the yeast Saccharomyces cerevisiae, I investigated the mechanism of reciprocal mitotic crossovers. Since spontaneous mitotic recombination events are very infrequent, I used a diploid strain that allowed for selection of cells that had the recombinant chromosomes expected for a reciprocal crossover (RCO). The diploid was also heterozygous for many single-nucleotide polymorphisms, allowing the accurate mapping of the recombination events.</p>
<p>I mapped spontaneous crossovers to a resolution of about 4 kb in a 120 kb region of chromosome V. This analysis is the first large-scale mapping of mitotic events performed in any organism. One region of elevated recombination was detected (a "hotspot") and the region near the centromere of chromosome V had low levels of recombination ("coldspot"). This analysis also demonstrated the crossovers were often associated with the non-reciprocal transfer of information between homologous chromosomes; such events are termed "gene conversions" and have been characterized in detail in the products of meiotic recombination. The amount of DNA transferred during mitotic gene conversion events was much greater than that observed for meiotic conversions, 12 kb and 2 kb, respectively. In addition, about 40% of the conversion events had patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.</p>
<p>To confirm this unexpected conclusion, I examined the crossovers and gene conversion events induced by gamma irradiation in G1- and G2-arrested diploid yeast cells. The gene conversion patterns of G1-irradiated cells (but not G2-irradiated cells) mimic the conversion events associated with spontaneous reciprocal crossovers (RCOs), confirming my hypothesis that many spontaneous crossovers are initiated by a DSB on an unreplicated chromosome. In conclusion, my results have resulted in a new understanding of the properties of mitotic recombination within the context of cell cycle.</p> / Dissertation
|
6 |
G/C tracts and genome instability in Caenorhabditis elegansZhao, Yang 11 1900 (has links)
The integrity of the genome is critical to organisms and it is affected by many factors. Radiation, for example, poses a serious threat to genome stability of human beings. While physical monitors for radiation hazard are present, the biological consequences of long term exposure to radiation are not well understood. With the opportunity as part of the International Caenorhabditis elegans Experiment-1 flight project, several approaches using C. elegans were taken to measure mutational changes that occurred during the spaceflight. Among these methods, the eT1 balancer system was demonstrated to be well-suited as an integrating biological dosimeter for spaceflight.
The dog-1 gene in C. elegans is required to prevent mutations at poly-G/poly-C tracts, and previous work has described that in the absence of DOG-1, small deletions initiate within these tracts, most likely as a consequence of improperly repaired replication blocks. The eT1 balancer system was adapted to investigate the broad mutational spectrum of dog-1 mutants. Using this system, I was able to determine a forward mutation rate of approximately 1 x 10-3, 10 fold higher than spontaneous. Both small deletions as reported previously and unreported large chromosome rearrangements were observed, and most of mutations analyzed are associated with G/C tracts. Thus, I propose that following dog-1-induced replication blocks, repair leads to a wide range of mutational events and chromosomal instabilities, similar to those seen in human cancers.
The existence of the G/C tracts in C. elegans creates a fortuitous but perplexing problem. They are hotspots for genome instability and need enzymatic protection. In the genome of C. elegans, approximately 400 G/C tracts exist and are distributed along every chromosome in a non-random pattern. G/C tracts are also over-represented in another Caenorhabditis species, C. briggsae. However, the positions and distribution differ from those in C. elegans. Furthermore, in C. elegans, analysis of SAGE data showed that the position of the G/C tracts correlated with the level of gene expression. Although being a threat to genome stability, the genomic distribution of G/C tracts in C. elegans and their effect on regional transcription levels suggest a role for G/C tracts in chromatin structure.
|
7 |
G/C tracts and genome instability in Caenorhabditis elegansZhao, Yang 11 1900 (has links)
The integrity of the genome is critical to organisms and it is affected by many factors. Radiation, for example, poses a serious threat to genome stability of human beings. While physical monitors for radiation hazard are present, the biological consequences of long term exposure to radiation are not well understood. With the opportunity as part of the International Caenorhabditis elegans Experiment-1 flight project, several approaches using C. elegans were taken to measure mutational changes that occurred during the spaceflight. Among these methods, the eT1 balancer system was demonstrated to be well-suited as an integrating biological dosimeter for spaceflight.
The dog-1 gene in C. elegans is required to prevent mutations at poly-G/poly-C tracts, and previous work has described that in the absence of DOG-1, small deletions initiate within these tracts, most likely as a consequence of improperly repaired replication blocks. The eT1 balancer system was adapted to investigate the broad mutational spectrum of dog-1 mutants. Using this system, I was able to determine a forward mutation rate of approximately 1 x 10-3, 10 fold higher than spontaneous. Both small deletions as reported previously and unreported large chromosome rearrangements were observed, and most of mutations analyzed are associated with G/C tracts. Thus, I propose that following dog-1-induced replication blocks, repair leads to a wide range of mutational events and chromosomal instabilities, similar to those seen in human cancers.
The existence of the G/C tracts in C. elegans creates a fortuitous but perplexing problem. They are hotspots for genome instability and need enzymatic protection. In the genome of C. elegans, approximately 400 G/C tracts exist and are distributed along every chromosome in a non-random pattern. G/C tracts are also over-represented in another Caenorhabditis species, C. briggsae. However, the positions and distribution differ from those in C. elegans. Furthermore, in C. elegans, analysis of SAGE data showed that the position of the G/C tracts correlated with the level of gene expression. Although being a threat to genome stability, the genomic distribution of G/C tracts in C. elegans and their effect on regional transcription levels suggest a role for G/C tracts in chromatin structure.
|
8 |
G/C tracts and genome instability in Caenorhabditis elegansZhao, Yang 11 1900 (has links)
The integrity of the genome is critical to organisms and it is affected by many factors. Radiation, for example, poses a serious threat to genome stability of human beings. While physical monitors for radiation hazard are present, the biological consequences of long term exposure to radiation are not well understood. With the opportunity as part of the International Caenorhabditis elegans Experiment-1 flight project, several approaches using C. elegans were taken to measure mutational changes that occurred during the spaceflight. Among these methods, the eT1 balancer system was demonstrated to be well-suited as an integrating biological dosimeter for spaceflight.
The dog-1 gene in C. elegans is required to prevent mutations at poly-G/poly-C tracts, and previous work has described that in the absence of DOG-1, small deletions initiate within these tracts, most likely as a consequence of improperly repaired replication blocks. The eT1 balancer system was adapted to investigate the broad mutational spectrum of dog-1 mutants. Using this system, I was able to determine a forward mutation rate of approximately 1 x 10-3, 10 fold higher than spontaneous. Both small deletions as reported previously and unreported large chromosome rearrangements were observed, and most of mutations analyzed are associated with G/C tracts. Thus, I propose that following dog-1-induced replication blocks, repair leads to a wide range of mutational events and chromosomal instabilities, similar to those seen in human cancers.
The existence of the G/C tracts in C. elegans creates a fortuitous but perplexing problem. They are hotspots for genome instability and need enzymatic protection. In the genome of C. elegans, approximately 400 G/C tracts exist and are distributed along every chromosome in a non-random pattern. G/C tracts are also over-represented in another Caenorhabditis species, C. briggsae. However, the positions and distribution differ from those in C. elegans. Furthermore, in C. elegans, analysis of SAGE data showed that the position of the G/C tracts correlated with the level of gene expression. Although being a threat to genome stability, the genomic distribution of G/C tracts in C. elegans and their effect on regional transcription levels suggest a role for G/C tracts in chromatin structure. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
|
9 |
ゲノムストレスに対する細胞応答機構の解明河村, 香寿美 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第21874号 / 人博第903号 / 新制||人||215(附属図書館) / 2018||人博||903(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)准教授 小林 純也, 教授 宮下 英明, 准教授 三浦 智行 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
|
10 |
Progerin Sequestration of PCNA Promotes Replication Fork Collapse and Mislocalization of XPA in Laminopathy-Related Progeroid SyndromesHilton, Benjamin A., Liu, Ji, Cartwright, Brian M., Liu, Yiyong, Breitman, Maya, Wang, Youjie, Jones, Rowdy, Tang, Hui, Rusinol, Antonio, Musich, Phillip R., Zou, Yue 01 September 2017 (has links)
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin).We previously reported that XPAmislocalized to the progerin-inducedDNAdouble-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation,DNA damage responses, and early replication arrest inHGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNAat replication forks.Our results suggest that although PCNAismuchmore competitive than XPAin binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPAreplication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerininduced genome instability and accelerated replicative senescence in HGPS. - Hilton, B. A., Liu, J., Cartwright, B.M.,Liu,Y.,Breitman,M.,Wang,Y., Jones,R.,Tang, H.,Rusinol,A.,Musich,P.R.,Zou,Y.Progerin sequestrationof PCNApromotes replication fork collapse andmislocalization ofXPAin laminopathy-related progeroid syndromes.
|
Page generated in 0.0718 seconds