Number of lanes is a basic roadway attribute that is widely used in many transportation applications. Traditionally, number of lanes is collected and updated through field surveys, which is expensive especially for large coverage areas with a high volume of road segments. One alternative is through manual data extraction from high-resolution aerial images. However, this is feasible only for smaller areas. For large areas that may involve tens of thousands of aerial images and millions of road segments, an automatic extraction is a more feasible approach. This dissertation aims to improve the existing process of extracting number of lanes from aerial images automatically by making improvements in three specific areas: (1) performance of lane model, (2) automatic acquisition of external knowledge, and (3) automatic lane location identification and reliability estimation. In this dissertation, a framework was developed to automatically recognize and extract number of lanes from geo-rectified aerial images. In order to address the external knowledge acquisition problem in this framework, a mapping technique was developed to automatically estimate the approximate pixel locations of road segments and the travel direction of the target roads in aerial images. A lane model was developed based on the typical appearance features of travel lanes in color aerial images. It provides more resistance to “noise” such as presence of vehicle occlusions and sidewalks. Multi-class classification test results based on the K-nearest neighbor, logistic regression, and Support Vector Machine (SVM) classification algorithms showed that the new model provides a high level of prediction accuracy. Two optimization algorithms based on fixed and flexible lane widths, respectively, were then developed to extract number of lanes from the lane model output. The flexible lane-width approach was recommended because it solved the problems of error-tolerant pixel mapping and reliability estimation. The approach was tested using a lane model with two SVM classifiers, i.e., the Polynomial kernel and the Radial Basis Function (RBF) kernel. The results showed that the framework yielded good performance in a general test scenario with mixed types of road segments and another test scenario with heavy plant occlusions.
Identifer | oai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-3225 |
Date | 29 April 2015 |
Creators | TANG, LI |
Publisher | FIU Digital Commons |
Source Sets | Florida International University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | FIU Electronic Theses and Dissertations |
Page generated in 0.0022 seconds