In a differential geometry setting, we can analyze the solutions to systems of differential equations in such a way as to allow us to derive entire classes of solutions from any given solution. This process involves calculating the Lie symmetries of a system of equations and looking at the resulting transformations. In this paper we will give a general background of the theory necessary to develop the ideas of working in the jet space of a given system of equations, applying this theory to harmonic functions in the complex plane. We will consider harmonic functions in general, harmonic functions with constant Jacobian, harmonic functions with fixed convexity and a few other subclasses of harmonic functions.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1315 |
Date | 23 May 2005 |
Creators | Petersen, Willis L. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds