In a recent paper, we compared the diffraction and geometrical optical transfer functions (OTFs) of an optical imaging system, and showed that the GOTF approximates the DOTF within 10% when a primary aberration is about two waves or larger [Appl. Opt., 55, 3241-3250 (2016)]. In this paper, we determine and compare the times to calculate the DOTF by autocorrelation or digital autocorrelation of the pupil function, and by a Fourier transform (FT) of the point-spread function (PSF); and the GOTF by a FT of the geometrical PSF and its approximation, the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the ray aberrations in the image plane for the GOTF. The numerical results for primary aberrations and a typical imaging system show that the direct integrations are slow, but the calculation of the DOTF by a FT of the PSF is generally faster than the GOTF calculation by a FT of the spot diagram.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626488 |
Date | 23 August 2017 |
Creators | Díaz, José Antonio, Mahajan, Virendra N. |
Contributors | Univ Arizona, Coll Opt Sci |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). |
Relation | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10375/2275377/Diffraction-and-geometrical-optical-transfer-functions-calculation-time-comparison/10.1117/12.2275377.full |
Page generated in 0.0013 seconds