Made available in DSpace on 2014-06-12T15:55:19Z (GMT). No. of bitstreams: 2
arquivo2232_1.pdf: 2168681 bytes, checksum: 52cce4fca21c1e30911e1184708c64f7 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2010 / A mitigação de riscos é uma das grandes preocupações das empresas da área financeira. Dispor de ferramentas que possam sinalizar possíveis ocorrências de perdas e permitam realizar ações no sentido de evitá-las é de grande interesse. A inteligência artificial tem sido empregada na solução dos mais diversos problemas envolvendo processos de tomada de decisão.
Este trabalho, apoiado no Ciclo de Vida de Mineração de Dados ou Data Mining Life Cycle (DMLC), analisa o ciclo de um Método de Avaliação do Risco Operacional (MARO) utilizado em bancos. A análise investiga aspectos como processos, profissionais, recursos de armazenamento de dados, fluxos de decisão e iteração entre os elementos envolvidos.
Baseado na metodologia CRISP-DM (Cross Industry Standard Process for Data Mining) e em Redes Neurais Artificiais, é proposto um modelo que suporta o método MARO, desenvolvendo um classificador neural para a análise de risco operacional de agências bancárias a partir de um conjunto de indicadores. Os experimentos realizados demonstram a eficiência do modelo proposto com adequações no modelo MARO original e desempenho de classificação que abre perspectivas de utilização da abordagem na análise rápida do risco operacional em bancos. Os principais benefícios são a aceleração das informações sobre o risco operacional, com redução do tempo necessário para geração dos indicativos de risco, o aumento da acurácia na identificação precoce de situações de alto risco e a pró-atividade em evitar perdas financeiras ou desperdício de recursos nos processos de tomada de decisão
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/2191 |
Date | 31 January 2010 |
Creators | de Pádua Bezerra da Silva, Antônio |
Contributors | Crispim Vasconcelos, Germano |
Publisher | Universidade Federal de Pernambuco |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds