Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-04-05T18:01:32Z
No. of bitstreams: 1
DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-19T13:35:49Z (GMT) No. of bitstreams: 1
DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-19T13:36:00Z (GMT) No. of bitstreams: 1
DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Made available in DSpace on 2017-04-19T13:42:20Z (GMT). No. of bitstreams: 1
DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5)
Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Biodiesel is a renewable fuel and its production generate raw glycerol (RG) as main byproduct.
The use of RG as carbon source in microorganism cultivations poses as an alternative to add
value and reduce the environmental impact of this residue. However, RG impurities (salts,
esters, alcohol and soap) can inhibit cell growth. Techniques that aims adapting microorganisms
to environments containing contaminants by adaptive evolution have been employed to
overcome inhibition problems. Adaptation strategies allows imposing a certain selective
pressure upon the population, favoring the appearance of mutants and selection of most
beneficial mutations, which will make the cell more suited to develop itself in a hostile
environment. This work employed Adaptive Evolution methodology to obtain an E. coli K12
strain adapted to RG concentrated by rotary evaporation (RGRota). Cultivations were carried
out in plates (E. coli – USP strain) incubated at 37 ºC, as well as shaken flasks (E. coli – UMinho
strain), kept at 37 ºC and 300 rpm, involving transfers to defined media gradually enriched with
RGRota. Obtained evolved strain as well as the wild-type strain E. coli – UMinho were
characterized in cultivations using 2 L, bench-scale bioreactor, equipped with monitoring and
control system. During shaken flask experiments, growth was followed by optical density (OD)
readings. In bioreactor cultures, samples were withdrawal to analyze cell concentration of the
suspension (OD and dry cell weight), concentrations of glycerol, ethanol and organic acids
(liquid chromatography), concentration of viable cells (colony forming units counting) and
morphology. Cultures characterization were carried out with E. coli – USP in shaken flasks, the
values of maximum specific growth rate (μmax) remained between 0.40 e 0.45 h-1 and they
showed little influence of strain or media composition. These results suggest that the selected
strain did not have differentiated characteristics from the wild-type strain. For E. coli – UMinho,
two adaptation strategies were evaluated: successive transfer during exponential growth phase
(OD = ~2.5) and during stationary growth phase (OD = ~10). In both cases cells evolved,
showing increased μmax values, with more homogeneous populations being observed for
adaptation conducted under the first strategy. After 26 days of adaptation, corresponding to 534
generations, an evolved strain, exhibiting μmax of 0.60 h-1 and capable of growing in medium
containing 29 g/L of glycerol from RGRota was selected by the methodology of successive
transfers in exponential phase. This growth rate was 27.6 % superior to that achieved by the
wild-type strain (0.47 h-1). Evolved and wild-type strains were cultivated in bioreactor,
containing defined medium prepared with GBRota to have 40 g/L of glycerol. The evolved one
maintained μmáx of 0.61 h-1. Acetate formation was observed, with yield of 0.19 g acetate/g
glycerol, which caused growth inhibition and limited biomass yield to 0.26 gbiomass/gglycerol.
When the wild-type strain was cultivated in bioreactor, exponential growth started after 24 h of
lag phase and it presented μmax of 0.28 h-1, biomass yield of 0,39 gbiomass/gglycerol and acetate
yield of 0.19 gacetate/gglycerol. The evolved strain obtained, capable of growing in the biodiesel
production residue, showed a μmax value similar to the best results reported in the literature for
E. coli adaptation in pure glycerol (0.7 h-1), what demonstrates the successful application of the
adaptive evolution methodology. Acetate accumulation can be reduced by Genetic Engineering
techniques to manipulate metabolic pathways and this will lead to development of an industrial
strain which can be employed as a platform of high value products using unrefined glycerol as
substrate. / O biodiesel é um combustível renovável cuja produção gera o glicerol bruto (GB) como
principal subproduto. O aproveitamento de GB como fonte de carbono em cultivos de
microrganismos se apresenta como uma alternativa para agregar valor e reduzir o impacto
ambiental deste resíduo. Contudo, as impurezas do GB (sais, ésteres, álcool e sabão) podem
inibir o crescimento das células. Técnicas que visam adaptar os microrganismos via evolução
adaptativa a ambientes contendo contaminantes vêm sendo empregadas para contornar
problemas de inibição. As estratégias de adaptação permitem impor uma certa pressão seletiva
sobre a população, favorecendo o aparecimento de mutantes e a seleção de mutações benéficas,
que tornam a célula mais apta a se desenvolver em um ambiente hostil. O trabalho empregou a
metodologia de Evolução Adaptativa para obter uma linhagem de E. coli K12 adaptada ao GB
concentrado por rotaevaporação (GBRota). Os cultivos foram realizados tanto em placas
(linhagem E. coli – USP) incubadas a 37ºC, como em frascos agitados (linhagem E. coli –
UMinho), mantidos a 37ºC e 300 rpm, envolvendo transferências para meios definidos
gradualmente enriquecidos com GBRota. A linhagem evoluída obtida assim como a linhagem
selvagem E. coli – UMinho foram caracterizadas em cultivos em biorreator de bancada de 2 L,
dotado de sistema de monitoramento e controle. Durante os experimentos em frascos agitados, o
crescimento foi acompanhado por leitura de densidade ótica (DO). Nos cultivos em biorreator,
amostras foram coletadas para análises de concentração celular da suspensão (DO e massa seca),
da concentração de glicerol, etanol e ácidos orgânicos (por cromatografia líquida), da concentração
de células viáveis (por contagem de unidades formadoras de colônia) e de morfologia. Para os
cultivos de caracterização da E. coli – USP realizados em frascos agitados, os valores da
velocidade máxima específica de crescimento (max) permaneceram entre 0,40 e 0,45 h-1, sendo
pouco influenciados pela linhagem ou pela composição dos meios, sugerindo que a metodologia
adotada para adaptação em placa não foi eficiente, já que a linhagem selecionada não possuía
características diferenciadas em relação à linhagem selvagem. Para a E. coli – UMinho foram
avaliadas duas estratégias de adaptação: transferências sucessivas na fase exponencial do
cultivo (DO = ~2,5) e na fase estacionária (DO = ~10). Em ambos os casos, as células
evoluíram, apresentando aumento nos valores de max., sendo que populações mais homogêneas
foram observadas na adaptação realizada pela primeira estratégia. Após 26 dias de adaptação,
correspondendo a 534 gerações, foi selecionada pela metodologia de transferências sucessivas
na fase exponencial, uma linhagem evoluída apresentando velocidade máxima específica de
0,60 h-1, resultado superior em 27,6% ao da linhagem selvagem (0,47h-1), capaz de crescer em
meio contendo ~30 g/L de glicerol proveniente do GBRota. As linhagens selvagem e evoluída
foram cultivadas em biorreator contendo meio preparado com GBRota na concentração de 40
g/L de glicerol. A linhagem evoluída manteve o μmáx de 0,61 h-1. Foi observada formação de
acetato, com rendimento de 0,19 gacetato/gglicerol, o que causou inibição do crescimento e limitou
o rendimento em biomassa a 0,26 gbiomassa/gglicerol. Enquanto que, para a linhagem selvagem o
cultivo em biorreator apresentou uma fase lag de 24 h, um max de 0,28 h-1, rendimento em
biomassa de 0,39 gacetato/gglicerol e rendimento em acetato 0,19 gacetato/gglicerol. A linhagem
evoluída obtida no presente trabalho, capaz de crescer no resíduo da produção de biodiesel,
apresenta max semelhante aos melhores resultados relatados na literatura para adaptação de E.
coli em glicerol puro (0,7 h-1), demonstrando o sucesso da aplicação da metodologia de
evolução adaptativa. O acúmulo de acetato pode ser amenizado utilizando técnicas de
Engenharia Genética para manipulação das vias metabólicas e permitindo o desenvolvimento
de uma linhagem industrial que poderá ser empregada como plataforma para obtenção de
produtos de alto valor agregado usando o glicerol não refinado como substrato.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/8628 |
Date | 31 March 2016 |
Creators | Miranda, Letícia Passos |
Contributors | Zangirolami, Teresa Cristina, Horta, Antonio Carlos Luperni |
Publisher | Universidade Federal de São Carlos, Câmpus São Carlos, Programa de Pós-graduação em Engenharia Química, UFSCar |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0133 seconds