The inhibitory glycine receptors are one of the major mediators of rapid synaptic inhibition in the mammalian brainstem, spinal cord and higher brain centres. They are ligand-gated ion channels that are mainly involved in the regulation of motor functions. Dysfunction of the receptor is associated with motor disorders such as hypereklepxia or some forms of spasticity. GlyR is composed of two glycosylated integral membrane proteins α and β and a peripheral membrane protein of gephyrin. Moreover, there are four known isoforms of the α-subunit (α1-4) of GlyR while there is a single β-subunit. Glycine receptors can be homomeric including α subunits only or heteromeric containing both α and β subunits. To date, strychnine is the ligand that has the highest affinity as glycine receptor ligand. It acts as a competitive antagonist of glycine that results in the inhibition of Cl- ions permeation and consequently reducing GlyR-mediated inhibition.
For a long time, the details of the molecular mechanism of GlyRs inactivation by strychnine were insufficient due to the lack of high-resolution structures of the receptor. Only homology models based on structures of other cys-loop receptors have been available. Recently, 3.0 Å X-ray structure of the human glycine receptor- α3 homopentamer in complex with strychnine, as well as electro cryo-microscopy structures of the zebra fish α1 GlyR in complex with strychnine and glycine were published. Such information provided detailed insight into the molecular recognition of agonists and antagonists and mechanisms of GlyR activation and inactivation.
Very recently, a series of dimeric strychnine analogs obtained by diamide formation of two molecules of 2-aminostrychnine with diacids of different chain length was pharmacologically evaluated at human α1 and α1β glycine receptors. None of the dimeric analogs was superior to strychnine.
The present work focused on the extension of the structure-activity relationships of strychnine derivatives at glycine receptors
All the synthesized compounds were pharmacologically evaluated at human α1 and α1β glycine receptors in a functional FLIPRTM assay and the most potent analogs were pharmacologically evaluated in a whole cell patch-clamp assay and in [3H]strychnine binding studies.
It was reported that 11-(E)-isonitrosostrychnine displayed a 2-times increased binding to both α1 and α1β glycine receptors which prompted us to choose the hydroxyl group as a suitable attachment point to connect two 11-(E)-isonitrosostrychnine molecules using a spacer. In order to explore the GlyR pocket tolerance for oxime extension, a series of oxime ethers with different spacer lengths and sterical/lipophilic properties were synthesized biologically evaluated. Among all the oxime ethers, methyl, allyl and propagyl oxime ethers were the most potent antagonists displaying IC50 values similar to that of strychnine. These findings indicated that strychnine binding site at GlyRs comprises an additional small lipophilic pocket located in close proximity to C11 of strychnine and the groups best accommodated in this pocket are (E)-allyl and (E)-propagyl oxime ethers.
Moreover, 11-aminostrychnine, and the corresponding propionamide were prepared and pharmacologically evaluated to examine the amide function at C11 as potential linker.
A series of dimeric strychnine analogs designed by linking two strychnine molecules through amino groups in position 11 with diacids were synthesized and tested in binding studies and functional assays at human α1 and α1β glycine receptors. The synthesized bivalent ligands were designed to bind simultaneously to two α-subunits of the pentameric glycine receptors causing a possibly stronger inhibition than the monomeric strychnine. However, all the bivalent derivatives showed no significant difference in potency compared to strychnine. When comparing the reference monomeric propionamide containing ethylene spacer to the dimeric ligand containing butylene spacer, a 3-fold increase in potency was observed. Since the dimer containing (CH2)10 spacer length was found to be equipotent to strychnine, it is assumed that one molecule of strychnine binds to the receptor and the ‘additional’ strychnine molecule in the dimer probably protrudes from the orthosteric binding sites of the receptor. / Die inhibitorischen Glycin-Rezeptoren (GlyR) gehören zu den wichtigsten Mediatoren der schnellen synaptischen Hemmung im Säugetierhirnstamm, Rückenmark und in höheren Gehirnzentren. Sie sind ligandgesteuerte Ionenkanäle, die hauptsächlich an der Regulation der motorischen Funktionen beteiligt sind. Dysfunktion des Rezeptors ist assoziiert mit motorischen Störungen wie Hyperekplexie und einigen Formen von Spastizität. GlyR sind Proteinkomplexe, die aus zwei glykosylierten integralen Membranproteinen α und β und dem peripheren Membranprotein Gephyrin bestehen. Von der α-Untereinheit sind vier Isoformen bekannt (α1-4), von der β-Untereinheit nur eine. GlyR können homomer (nur α-Untereinheiten) oder heteromer (α und ß-Untereinheiten) sein. Das Alkaloid Strychnin weist eine sehr hohe Affinität zu den GlyR auf. Es wirkt als kompetitiver Antagonist von Glycin und führt nach Bindung zu einer Hemmung des Chlorid-Ionen-Einstroms und folglich zu einer Verringerung der GlyR-vermittelten Inhibition.
Lange Zeit waren die genauen Details des molekularen Mechanismus der GlyR-Inaktivierung durch Strychnin aufgrund des Fehlens von hochauflösenden Röntgenstrukturen des Rezeptors nicht bekannt; es standen nur Homologie-Modelle basierend auf Strukturen anderer cys-Loop-Rezeptoren zur Verfügung. Vor kurzem wurden eine 3.0-Å-Röntgenstruktur des humanen GlyR (α3-Homopentamer) im Komplex mit Strychnin sowie eine Kryoelektronenmikroskopie-Struktur des Zebrafisches (α1-GlyR im Komplex mit Strychnin und Glycin) veröffentlicht. Dadurch erhielt man detailliertere Informationen über die molekulare Erkennung von Agonisten und Antagonisten sowie den Mechanismen der Aktivierung und Inaktivierung von GlyR.
Kürzlich wurde eine Reihe von dimeren Strychnin-Analoga, bei denen jeweils zwei Moleküle 2-Aminostrychnin durch Reaktion mit Disäuren unterschiedlicher Kettenlänge zu den entsprechenden Diamiden miteinander verknüpft wurden, pharmakologisch an humanen α1- und α1β-GlyR untersucht. Keines der dimeren Analoga war Strychnin überlegen.
Die vorliegende Arbeit konzentriert sich auf der Erweiterung der Struktur-Wirkungs-Beziehungen von Strychnin-Derivaten bzgl. der Aktivität an Glycin-Rezeptoren. Die strukturellen Änderungen, die an Strychnin durchgeführt wurden, sind in Abbildung 27 dargestellt. ...
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:14222 |
Date | January 2017 |
Creators | Mohsen, Amal Mahmoud Yassin |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds