This dissertation studies two independent problems, one is about graph labeling
and the other problem is related to connectivity condition in a simple graph.
Graph labeling is a rapidly developing area of research in graph theory, having connections with a variety of application-oriented areas such as VLSI optimization, data
structures and data representation. Furthermore, the connectivity conditions in a simple graphs may help us to study the new aspects of ad hoc networks, social networks and web graphs. In chapter 2, we study path systems, reduced path systems and how to construct a super edge-graceful tree with any number of edges using path systems. First, we give an algorithm to reduce a labeled path system to a smaller labeled path system of a different type. First, we investigate the cases (m, k) = (3; 5) and
(m, k) = (4; 7), where m is the number of paths and 2k is the length of each path, and then we give a generalization for any k, m = 3 and m = 4. We also describe a procedure to construct a super-edge-graceful tree with any number of edges. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_30778 |
Contributors | Gottipati, Chenchu B. (author), Locke, Stephen C. (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Mathematical Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 85 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds