Diese Arbeit befasst sich mit einer umfangreichen Charakterisierung des Bruchverhaltens von amorph/kristallinen Multilagen (ZrO2/Ti) mit Schichtdicken kleiner als 100nm. Das Bruchverhalten wird systematisch in Abhängigkeit der Schichtdicke der kristallinen Komponente untersucht.
Die Bruchversuche werden senkrecht und parallel zu den Grenzflächen durchgeführt. Diese werden dabei in-situ in einem Transmissionselektronenmikroskop durchgeführt um zusätzlich Informationen bezüglich der mikrostrukturellen Veränderungen während des Rissprozesses zu erlangen.
Der in dieser Arbeit realisierte Bruchversuch zeichnet sich dadurch aus, dass ein Riss kontrollierbar durch das Material getrieben werden kann und zusätzlich die Größe der plastischen Zone direkt sichtbar und zugänglich gemacht wird. Weiterhin können kritische Energiefreisetzungraten anhand der Bildanalyse der Bruchversuche bestimmt werden. Dabei hat sich gezeigt, dass das Bruchverhalten auf der Nanoskala erst über die kombinierte Betrachtung von Energiefreisetzungsraten und der ablaufenden mikrostrukturellen Prozesse während des Bruchs charakterisiert werden kann.
In der Geometrie parallel zu den Grenzflächen wird für die dickeren Titan-Schichtdicken beobachtet, dass sich der Riss in den Titan-Schichten ausbreitet, was anhand der Festigkeitsverhältnisse der einzelnen Schichten und Grenzflächen erklärt werden kann. Lediglich für sehr kleine Titan-Schichtdicken zeigt sich eine Abweichung vom Risspfad hin zur Ausbreitung entlang der Grenzflächen. Auch die quantitativen Energiefreisetzungsraten zeigen ein längenskalenabhängiges Verhalten, welches durch die Festigkeiten der Titan-Schichten sowie durch die Größe der plastischen Zone erklärt werden kann.
In der Geometrie der Rissausbreitung senkrecht zu den Grenzflächen zeigt sich das zu erwartende Bruchverhalten. Der Riss breitet sich über die Grenzflächen hinweg aus und in duktilen Titan-Schichten kann eine Rissbrückenbildung beobachtet werden.
Bruchversuche in einer Gasatmosphäre bestätigen, dass der Risspfad durch eine Gasatmosphäre beeinflusst werden kann und somit für das gezielte Versagen von Grenzflächen oder auch Materialien in Kompositstrukturen genutzt werden könnte.
Identifer | oai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0028-8643-6 |
Date | 17 November 2015 |
Creators | Kelling, Andreas |
Contributors | Volkert, Cynthia Prof. Dr. |
Source Sets | Georg-August-Universität Göttingen |
Language | deu |
Detected Language | German |
Type | doctoralThesis |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0024 seconds