• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 4
  • Tagged with
  • 34
  • 27
  • 22
  • 14
  • 14
  • 14
  • 12
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellulose based transition metal nano-composites : structuring and development

Glatzel, Stefan January 2013 (has links)
Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigated. It was found that, when infusing cellulose with an aqueous iron salt solution and heating this mixture under inert atmosphere to 640 °C and above, a liquid eutectic mixture of iron and carbon with an atom ratio of approximately 1:1 forms. The eutectic droplets were monitored with in-situ TEM at the reaction temperature where they could be seen dissolving amorphous carbon and leaving behind a trail of graphitised carbon sheets and subsequently iron carbide nanoparticles. These transformations turned ordinary cellulose into a conductive and porous matrix that is well suited for catalytic applications. Despite these significant changes on the nanometre scale the shape of the matrix as a whole was retained with remarkable precision. This was exemplified by folding a sheet of cellulose paper into origami cranes and converting them via the temperature treatment in to magnetic facsimiles of those cranes. The study showed that the catalytic mechanisms derived from controlled systems and described in the literature can be transferred to synthetic concepts beyond the lab without loss of generality. Once the processes determining the transformation of cellulose into functional materials were understood, the concept could be extended to other metals and metal-combinations. Firstly, the procedure was utilised to produce different ternary iron carbides in the form of MxFeyC (M = W, Mn). None of those ternary carbides have thus far been produced in a nanoparticle form. The next part of this work encompassed combinations of iron with cobalt, nickel, palladium and copper. All of those metals were also probed alone in combination with cellulose. This produced elemental metal and metal alloy particles of low polydispersity and high stability. Both features are something that is typically not associated with high temperature syntheses and enables to connect the good size control with a scalable process. Each of the probed reactions resulted in phase pure, single crystalline, stable materials. After showing that cellulose is a good stabilising and separating agent for all the investigated types of nanoparticles, the focus of the work at hand is shifted towards probing the limits of the structuring and pattering capabilities of cellulose. Moreover possible post-processing techniques to further broaden the applicability of the materials are evaluated. This showed that, by choosing an appropriate paper, products ranging from stiff, self-sustaining monoliths to ultra-thin and very flexible cloths can be obtained after high temperature treatment. Furthermore cellulose has been demonstrated to be a very good substrate for many structuring and patterning techniques from origami folding to ink-jet printing. The thereby resulting products have been employed as electrodes, which was exemplified by electrodepositing copper onto them. Via ink-jet printing they have additionally been patterned and the resulting electrodes have also been post functionalised by electro-deposition of copper onto the graphitised (printed) parts of the samples. Lastly in a preliminary test the possibility of printing several metals simultaneously and thereby producing finely tuneable gradients from one metal to another have successfully been made. Starting from these concepts future experiments were outlined. The last chapter of this thesis concerned itself with alternative synthesis methods of the iron-carbon composite, thereby testing the robustness of the devolved reactions. By performing the synthesis with partly dissolved scrap metal and pieces of raw, dry wood, some progress for further use of the general synthesis technique were made. For example by using wood instead of processed cellulose all the established shaping techniques available for wooden objects, such as CNC milling or 3D prototyping, become accessible for the synthesis path. Also by using wood its intrinsic well defined porosity and the fact that large monoliths are obtained help expanding the prospect of using the composite. It was also demonstrated in this chapter that the resulting material can be applied for the environmentally important issue of waste water cleansing. Additionally to being made from renewable resources and by a cheap and easy one-pot synthesis, the material is recyclable, since the pollutants can be recovered by washing with ethanol. Most importantly this chapter covered experiments where the reaction was performed in a crude, home-built glass vessel, fuelled – with the help of a Fresnel lens – only by direct concentrated sunlight irradiation. This concept carries the thus far presented synthetic procedures from being common laboratory syntheses to a real world application. Based on cellulose, transition metals and simple equipment, this work enabled the easy one-pot synthesis of nano-ceramic and metal nanoparticle composites otherwise not readily accessible. Furthermore were structuring and patterning techniques and synthesis routes involving only renewable resources and environmentally benign procedures established here. Thereby it has laid the foundation for a multitude of applications and pointed towards several future projects reaching from fundamental research, to application focussed research and even and industry relevant engineering project was envisioned. / Die vorliegende Arbeit beschäftigt sich mit der Synthese und Strukturierung von Nanokompositen, d.h. mit ausgedehnten Strukturen, welche Nanopartikel enthalten. Im Zuge der Arbeit wurde der Mechanismus der katalytischen Graphitisierung, ein Prozess, bei dem ungeordneter Kohlenstoff durch metallische Nanopartikel in geordneten (graphitischen) Kohlenstoff überführt wird, aufgeklärt. Dies wurde exemplarisch am Beispiel von Zellulose und Eisen durchgeführt. Die untersuchte Synthese erfolgte durch das Lösen eines Eisensalzes in Wasser und die anschließende Zugabe von so viel Zellulose, dass das die gesamte Eisensalzlösung aufgenommen wurde. Die so erhaltene Mischung wurde anschließend unter Schutzgas innerhalb kürzester Zeit auf 800 °C erhitzt. Hierbei zeigte sich, dass zu Beginn der Reaktion Eisenoxidnanopartikel (Rost) auf der Oberfläche der Zellulose entstehen. Beim weiteren Erhöhen der Temperatur werden diese Partikel zu Eisenpartikeln umgewandelt. Diese lösen dann kleine Bereiche der Zellulose auf, wandeln sich in Eisenkarbid um und scheiden graphitischen Kohlenstoff ab. Nach der Reaktion sind die Zellulosefasern porös, jedoch bleibt ihre Faserstruktur vollkommen erhalten. Dies konnte am Beispiel eines Origamikranichs gezeigt werden, welcher nach dem Erhitzen zwar seine Farbe von Weiß zu Schwarz verändert hatte, ansonsten aber seine Form vollkommen beibehält. Aufgrund der eingebetteten Eisenkarbid Nanopartikel war der Kranich außerdem hochgradig magnetisch. Basierend auf dieser Technik wurden außerdem winzige metallische Nanopartikel aus Nickel, Nickel-Palladium, Nickel-Eisen, Kobalt, Kobalt-Eisen und Kupfer, sowie Partikel aus den Verbundkarbiden Eisen-Mangan-Karbid und Eisen-Wolfram-Karbid, jeweils in verschiedenen Mischungsverhältnissen, hergestellt und analysiert. Da die Vorstufe der Reaktion flüssig ist, konnte diese mit Hilfe eines einfachen kommerziellen Tintenstrahldruckers strukturiert auf Zellulosepapier aufgebracht werden. Dies ermöglicht gezielt Leiterbahnen, bestehend aus graphitisiertem Kohlenstoff, in ansonsten ungeordnetem (amorphen) Kohlenstoff zu erzeugen. Diese Methode wurde anschließend auf Systeme mit mehreren Metallen übertragen. Hierbei wurde die Tatsache, dass moderne Drucker vier Tintenpatronen beherbergen, ausgenutzt um Nanopartikel mit beliebigen Mischungsverhältnisse von Metallen zu erzeugen. Dieser Ansatz hat potentiell weitreichende Auswirkungen im Feld der Katalyse, da hiermit hunderte oder gar tausende Mischungen simultan erzeugt und getestet werden können. Daraus würden sich große Zeiteinsparungen (Tage anstelle von Monaten) bei der Entwicklung neuer Katalysatoren ergeben. Der letzte Teil der Arbeit beschäftigt sich mit der umweltfreundlichen Synthese der obengenannten Komposite. Hierbei wurden erfolgreich Altmetall und Holzstücke als Ausgangstoffe verwandt. Zusätzlich wurde gezeigt, dass die gesamte Synthese ohne Verwendung von hochentwickeltem Equipment durchgeführt werden kann. Dazu wurde eine sogenannte Fresnel-Linse genutzt um Sonnenlicht zu bündeln und damit direkt die Reaktionsmischung auf die benötigten 800 °C zu erhitzen. Weiterhin wurde ein selbst gebauter Glasreaktor eingesetzt und gezeigt, wie das entstehende Produkt als Abwasserfilter genutzt werden kann. Die Kombination dieser Ergebnisse bedeutet, dass dieses System sich beispielsweise zum Einsatz in Katastrophenregionen eignen würde, um ohne Strom und besondere Ausrüstung vor Ort Wasserfilter herzustellen.
2

In-situ Bruchversuche an amorph/kristallinen Multilagen im Transmissionselektronenmikroskop / In-situ fracture tests of amorphous/crystalline multilayers in a transmission electron microscope

Kelling, Andreas 17 November 2015 (has links)
Diese Arbeit befasst sich mit einer umfangreichen Charakterisierung des Bruchverhaltens von amorph/kristallinen Multilagen (ZrO2/Ti) mit Schichtdicken kleiner als 100nm. Das Bruchverhalten wird systematisch in Abhängigkeit der Schichtdicke der kristallinen Komponente untersucht.  Die Bruchversuche werden senkrecht und parallel zu den Grenzflächen durchgeführt. Diese werden dabei in-situ in einem Transmissionselektronenmikroskop durchgeführt um zusätzlich Informationen bezüglich der mikrostrukturellen Veränderungen während des Rissprozesses zu erlangen.  Der in dieser Arbeit realisierte Bruchversuch zeichnet sich dadurch aus, dass ein Riss kontrollierbar durch das Material getrieben werden kann und zusätzlich die Größe der plastischen Zone direkt sichtbar und zugänglich gemacht wird. Weiterhin können kritische Energiefreisetzungraten anhand der Bildanalyse der Bruchversuche bestimmt werden. Dabei hat sich gezeigt, dass das Bruchverhalten auf der Nanoskala erst über die kombinierte Betrachtung von Energiefreisetzungsraten und der ablaufenden mikrostrukturellen Prozesse während des Bruchs charakterisiert werden kann.  In der Geometrie parallel zu den Grenzflächen wird für die dickeren Titan-Schichtdicken beobachtet, dass sich der Riss in den Titan-Schichten ausbreitet, was anhand der Festigkeitsverhältnisse der einzelnen Schichten und Grenzflächen erklärt werden kann. Lediglich für sehr kleine Titan-Schichtdicken zeigt sich eine Abweichung vom Risspfad hin zur Ausbreitung entlang der Grenzflächen. Auch die quantitativen Energiefreisetzungsraten zeigen ein längenskalenabhängiges Verhalten, welches durch die Festigkeiten der Titan-Schichten sowie durch die Größe der plastischen Zone erklärt werden kann. In der Geometrie der Rissausbreitung senkrecht zu den Grenzflächen zeigt sich das zu erwartende Bruchverhalten. Der Riss breitet sich über die Grenzflächen hinweg aus und in duktilen Titan-Schichten kann eine Rissbrückenbildung beobachtet werden. Bruchversuche in einer Gasatmosphäre bestätigen, dass der Risspfad durch eine Gasatmosphäre beeinflusst werden kann und somit für das gezielte Versagen von Grenzflächen oder auch Materialien in Kompositstrukturen genutzt werden könnte.
3

Bioinspired interface management in composites: Exploring peptide-polymer conjugates as precision compatibilizers

Samsoninkova, Valeria 29 July 2020 (has links)
Die Natur bietet faszinierende Beispiele von Materialien mit besonderen mechanischen Eigenschaften wie Knochen oder Perlmutt. Die Grenzflächen in diesen Materialien scheinen eine der entscheidenden Faktoren zu sein. Die Natur benutzt Proteine als natürliche Kompatibilisatoren – Moleküle, die anorganische Oberfläche erkennen können und damit die Grenzfläche stabilizieren. Diese Arbeit beschäftigt sich mit der Aufgabe, die Anwendbarkeit des Konzeptes der Kompatibilisatoren aus den Biomaterialien auf synthetische Systeme zu prüfen. Das Konzept der Arbeit basiert auf der Erkenntnis, dass Peptide anorganische Oberflächen erkennen können. Die Peptidsequenzen können biokombinatorisch aus Phagen-Display-Bibliotheken identifiziert werden. Eine adhärierende Peptidsequenz zusammen mit Polymerblock stellt ein Peptid-Polymer Konjugat dar, der als eine vereinfachte Version der Grenzflächenproteinen betrachtet werden kann. Das Einblenden der Konjugate in die Komposite führt zur gleichzeitigen Verbesserung von Steifigkeit und Zähigkeit. Die Analyse der Materialstruktur zeigt die Unterdrückung der Aggregation und den entsprechenden Größeneffekt, der für die Verbesserung der mechanischen Eigenschaften verantwortlich ist. Das Konzept der bioinspirierten Kompatibilisatoren wurde auf andere Peptidsequenzen erweitert. Die Evaluierung der sekundären Wechselwirkungen hat gezeigt, dass je kleiner die Affinität zur Peptid-Peptid Wechselwirkung, desto höher ist die Verfügbarkeit der Sequenz für die anorganische Oberfläche. Die Peptidsequenzen mit der geringeren Löslichkeit aufgrund der Aggregation sind weniger effizient in der Erkennung der Oberfläche. Diese Arbeit zeigt, dass die Idee von den Biomolekülen an der Grenzfläche übertragbar auf die synthetischen Systeme ist. Das Konzept von der bioinspirierten Grenzflächenmodifizierung ist ein versatiles Tool für die Entwicklung neuer Materialien. / Nature provides fascinating examples of composite materials with exceptional mechanical properties such as bone or nacre. Bioinspired materials represent a new class of materials build according to architecture principles found in nature. Control of interface properties seems to be one of the key factors towards outstanding mechanical properties. Nature uses proteins as connecting molecules – compatibilizers, which are able to recognize inorganic surfaces and mediate the internal material interface. This thesis aims to evaluate the applicability of interface management derived from nature to synthetic system. The current concept is based on the sequence specific recognition of the inorganic surface by peptides. Specifically binding peptides can be biocombinatorially selected from a phage display library. Peptide-polyethylene oxide (PEO) conjugates, consisting of a previously identified specifically binding peptide sequence and polymer-block, are incorporated in the polymer composite material, composed of MgF2 nanoparticles particles and PEO. Peptide-polymer conjugates can be considered as the simplified version of natural compatibilizers. Incorporation of the conjugates into the composite leads to simultaneous improvement of mutually exclusive properties such as stiffness and toughness. Structural studies revealed suppression of particle aggregation and corresponding structural size effect responsible for improvement in the mechanical performance. Concept of bioinspired compatibilizer was expanded to the implementation of different peptide sequences. Evaluation of secondary interactions revealed that the smaller the affinity for peptide-peptide interaction, the higher the availability of peptide sequences for an inorganic surface. Sequences with low solubility due to aggregation are less efficient in surface recognition. This bioinspired concept of interface modification via peptide-polymer conjugates represents a versatile tool for new material development.
4

Synthese, Charakterisierung und Immobilisierung von Kohlenstoffnitriden für die photokatalytische Schadstoffzersetzung

Köwitsch, Isabel 26 November 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Synthese von Kohlenstoffnitriden (CN) über verschiedene Syntheserouten und deren Untersuchung bezüglich der photokatalytischen Aktivität zur Wasserreinigung bzw. zum Schadstoffabbau. Je nach Syntheseroute sind heptazinbasierte oder triazinbasierte Kohlenstoffnitride zugänglich. Die Kohlenstoffnitride werden auf ihr photokatalytisches Verhalten untersucht, wobei Produkte welche aus einer Polykondensationsreaktion ausgehend von Dicyandiamid in einem offenen Tiegel unter Luft erhalten werden, besonders hohe photokatalytische Aktivitäten aufweisen. Diese Materialien sind in der Lage verschiedene Schad- und Farbstoffe abzubauen. Die Literatur diskutiert defektreiche, unvollständig kondensierte CN-Materialien als besonders photokatalytisch aktiv. Um Rückschlüsse auf den Kondensationsgrad und die Oberflächenpolarität zu ermöglichen, wurde die Oberflächenpolarität (HBD) der CN-Materialien anhand des Kamlet-Taft-Parameters erstmal über eine Analytikmethode bestimmt. Es wird gezeigt, dass das Vorhandensein polarer Gruppen auf der Katalysatorfläche das Adsorptionsverhalten von Schadstoffen an die Katalysatoroberfläche begünstigt und so photokatalytische Abbaureaktionen positiv beeinflusst werden. CN-Materialien mit einer hohen HBD zeigen deutlich höhere Rhodamin B Umsätze, als Materialien mit einer niedrigen HBD. Photokatalytisch besonders aktive Kohlenstoffnitride wurden ausgewählt, um sie für die Schadstoffzersetzung zur Wasserreinigung als Schichten zu immobilisieren. Somit entfällt der für eine potentielle industrielle Anwendung mitunter aufwendige Abtrennungsschritt des Katalysatormaterials. Dazu kommen drei verschiedene Verfahren zum Einsatz. Zum einen werden magnetische Kohlenstoffnitrid/Eisenoxidkomposite hergestellt und diese über ein Airbrush-Sprühverfahren auf magnetische Substrate aufgebracht. Das Sprühverfahren wird auch genutzt, um Kohlenstoffnitridpartikel auf Silikonsubstrate aufzubringen. Darüber hinaus werden vliesartige Polymersubstrate über das Elektrospinnen erzeugt. Diese werden mit Kohlenstoffnitridpartikeln über ein Tauchverfahren beschichtet. Alle hergestellten Schichten werden auf ihr photokatalytisches Potential zum Schadstoffabbau untersucht. Dabei zeigt sich, dass sowohl Triclosan, als auch Ethinylestradiol und Rhodamin B erfolgreich abgebaut werden können.:Inhaltsverzeichnis Abkürzungsverzeichnis 3 1 Einleitung und Motivation 6 2 Grundlagen 9 2.1 Methoden zur Abwasserreinigung 9 2.1.1 Abwasserreinigung durch Kläranlagen 9 2.1.2 Einfluss von Medikamentenrückständen auf Mensch und Umwelt 10 2.1.3 Die Einführung der vierten Reinigungsstufe 11 2.2 Grundlagen der Photokatalyse 13 2.2.1 Photokatalytisches Grundprinzip 13 2.2.2 Kinetik und Mechanismen des photokatalytischen Abbaus von Schadstoffen 15 2.2.3 Kohlenstoffnitride als Photokatalysatoren 20 2.2.3.1 Historische Entwicklung und Strukturen von Kohlenstoffnitriden 20 2.2.3.2 Synthesestrategien von Kohlenstoffnitriden 21 2.2.3.3 Anwendung als Photokatalysator 23 2.2.4 Eisenoxide als Photokatalysatoren 25 2.2.4.1 Strukturen und Eigenschaften von Eisenoxiden 25 2.2.4.2 Synthesestrategien von Eisenoxiden 26 2.2.4.3 Anwendung als Photokatalysator 28 2.2.5 Funktionalisierung von Photokatalysatoren 29 2.3 Immobilisierungsmethoden von Photokatalysatoren 30 2.3.1 Überblick über Immobilisierungsmethoden 30 2.3.2 Immobilisierung von Kohlenstoffnitriden 34 2.3.3 Immobilisierung von Eisenoxiden 35 3 Ergebnisse und Diskussion 37 3.1 Synthese und Charakterisierung von Kohlenstoffnitriden 37 3.1.1 CN-Materialien aus der Synthese in evakuierten Quarzglasampullen 37 3.1.2 CN-Materialien aus der Synthese in einer Salzschmelze 44 3.1.3 CN-Materialien aus der Tiegelsynthese 49 3.1.3.1 Untersuchung des Einflusses der Synthesebedingungen auf Struktur und Eigenschaften 49 3.1.3.2 Weitere photokatalytische Untersuchungen mit CN550-T4 56 3.1.3.3 Einfluss der Strahlungsquelle auf den photokatalytischen Abbau mit CN550-T4 62 3.1.4 Vergleich der CN-Materialien erhalten über unterschiedliche Synthesemethoden 66 3.2 Synthese und Charakterisierung von Eisenoxiden 71 3.3 Synthese und Charakterisierung von Eisenoxid/CN-Kompositen 74 3.4 Immobilisierung von Photokatalysatoren 81 3.4.1 Immobilisierung von Eisenoxid/CN-Kompositen auf magnetischen Substraten 81 3.4.1.1 Voruntersuchungen 81 3.4.1.2 Optimierung der Schichten und photokatalytische Untersuchungen 84 3.4.2 Immobilisierung von CN-Materialien auf Polymervliesen 88 3.4.2.1 Darstellung von Polymervliesen über das Elektrospinnen 88 3.4.2.2 Funktionalisierung der Fasern mit CN550-T4-Materialien 92 3.4.2.3 Photokatalytische Untersuchungen der beschichten Vliese 96 3.4.3 Immobilisierung von CN-Materialien auf Silikonsubstraten 98 3.4.4 Vergleich der Immobilisierungsmethoden 106 4 Zusammenfassung und Ausblick 109 5 Experimenteller Teil 113 5.1 Arbeitstechniken und verwendete Geräte 113 5.2 Synthese von Katalysatorpartikeln 119 5.2.1 Synthese von Kohlenstoffnitriden in evakuierten Quarzglasampullen 119 5.2.2 Synthese von Kohlenstoffnitriden in einer Salzschmelze 120 5.2.3 Synthese von Kohlenstoffnitrid im Tiegel 121 5.2.4 Synthese von Eisenoxidpartikeln 122 5.2.5 Darstellung von Eisenoxid/CN-Kompositen 123 5.3 Immobilisierung von Photokatalysatoren 123 5.3.1 Immobilisierung von Eisenoxid/CN-Kompositen auf magnetischen Substraten 123 5.3.2 Sprühen von CN-Schichten auf Silikonsubstraten 124 5.3.3 Immobilisierung von CN-Materialien auf Polymervliesen 125 6 Literaturverzeichnis 127 7 Anhang VIII 8 Curriculum Vitae XII Selbständigkeitserklärung XIII
5

Bio-inspired structured composites for load-bearing bone graft substitution

Galea, Laetitia 21 May 2015 (has links) (PDF)
Natural composites, in particular nacre, often combine high strength and toughness thanks to highly ordered architectures and controlled geometries of the reinforcement components. However, combining strength, toughness and resorbability in synthetic materials remains a challenge in particular in the field of bone graft substitutes. In the present study, calcium phosphate-(CaP-)based materials with designed architectures inspired from natural composite materials were achieved. CaP platelets obtained by precipitation in organic medium were first aligned in chitosan matrices by solvent casting in ambient conditions. Efficient strengthening was obtained with 15 vol-% ceramic, reaching cortical bone strength (150 MPa) and preserving good ductility (5 % deformation). In a weak magnetic field, high spatial arrangement without percolation was maintained up to 20 vol-%. With directional freezing, good alignment of the platelets could be pushed up to 50 vol-%. In parallel, in situ recrystallization of CaP blocks in hydrothermal conditions led to hierarchical structures. The strength and the work-of-fracture were enhanced (300%) thanks to a change of failure mode.
6

Superpara- and paramagnetic polymer colloids by miniemulsion processes / Superpara- and paramagnetic polymer colloids by miniemulsion processes

Ramírez Ríos, Liliana Patricia January 2004 (has links)
Polymerverkapselte magnetische Nanopartikel versprechen, in der Zukunft sehr erfolgreich bei Anwendungen in der Biologie und der Medizin eingesetzt werden zu können z. B. in der Krebstherapie und als Kontrastmittel bei der magnetischen Kernspinresonanztomographie. Diese Arbeit zeigt, dass durch die interdisziplinäre Kombination verschiedener Techniken Herstellungsverfahren und Eigenschaften solcher Partikel verbessert werden können. <br /> <br /> Unter Miniemulsionen versteht man wässrige Dispersionen relativ stabiler Öltröpfchen, zwischen 30 und 50 nm Größe. Ein Nanometer (nm) ist der 1.000.000.000ste Teil eines Meters. Ein Haar ist ungefähr 60.000 Nanometer breit.<br /> <br /> Hergestellt werden Miniemulsionen durch Scherung eines Systems bestehend aus Öl, Wasser, Tensid (Seife) und einer weiteren Komponente, dem Hydrophob, das die Tröpfchen stabilisieren soll. Die Polymerisation von Miniemulsionen ermöglicht die Verkapselung anorganischer Materialen z. B. magnetischer Teilchen oder Gadolinium-haltiger Komponenten. Zu Optimierung des Verkapselung, ist es notwendig, die richtige Menge eines geeigneten Tensids zu finden. <br /> <br /> Die magnetischen polymerverkapselten Nanopartikel, die in einer wässrigen Trägerflüssigkeit dispergiert sind, zeigen in Abhängigkeit von Partikelgröße, Zusammensetzung, elektronischer Beschaffenheit, etc. ein sogenanntes superpara- oder paramagnetisches Verhalten. Superpara- oder paramagnetisches Verhalten bedeutet, dass die Flüssigkeiten in Anwesenheit äußerer Magnetfeldern ihre Fließfähigkeit beibehalten. Wenn das Magnetfeld entfernt wird, haben sie keine Erinnerung mehr daran, unter dem Einfluss eines Magnetfeldes gestanden zu haben, d. h., dass sie nach Abschalten des Magnetfeldes selbst nicht mehr magnetisch sind. <br /> <br /> Die Vorteile des Miniemulsionsverfahrens sind der hohe Gehalt und die homogene Verteilung magnetischer Teilchen in den einzelnen Nanopartikeln. Außerdem ermöglicht dieses Verfahren nanostrukturierte Kompositpartikel herzustellen, wie z. B polymerverkapselte Nanopartikel mit Nanoschichten bestehend aus magnetischen Molekülen. / Combining the magnetic properties of a given material with the tremendous advantages of colloids can exponentially increase the advantages of both systems. This thesis deals with the field of magnetic nanotechnology. Thus, the design and characterization of new magnetic colloids with fascinating properties compared with the bulk materials is presented. <br /> <br /> Ferrofluids are referred to either as water or organic stable dispersions of superparamagnetic nanoparticles which respond to the application of an external magnetic field but lose their magnetization in the absence of a magnetic field. <br /> <br /> In the first part of this thesis, a three-step synthesis for the fabrication of a novel water-based ferrofluid is presented. The encapsulation of high amounts of magnetite into polystyrene particles can efficiently be achieved by a new process including two miniemulsion processes. The ferrofluids consist of novel magnetite polystyrene nanoparticles dispersed in water which are obtained by three-step process including coprecipitation of magnetite, its hydrophobization and further surfactant coating to enable the redispersion in water and the posterior encapsulation into polystyrene by miniemulsion polymerization. It is a desire to take advantage of a potential thermodynamic control for the design of nanoparticles, and the concept of &quot;nanoreactors&quot; where the essential ingredients for the formation of the nanoparticles are already in the beginning. The formulation and application of polymer particles and hybrid particles composed of polymeric and magnetic material is of high interest for biomedical applications. Ferrofluids can for instance be used in medicine for cancer therapy and magnetic resonance imaging.<br /> <br /> Superparamagnetic or paramagnetic colloids containing iron or gadolinium are also used as magnetic resonance imaging contrast agent, for example as a important tool in the diagnosis of cancer, since they enhance the relaxation of the water of the neighbouring zones. New nanostructured composites by the thermal decomposition of iron pentacarbonyl in the monomer phase and thereafter the formation of paramagnetic nanocomposites by miniemulsion polymerization are discussed in the second part of this thesis. In order to obtain the confined paramagnetic nanocomposites a two-step process was used. In the first step, the thermal decomposition of the iron pentacarbonyl was obtained in the monomer phase using oleic acid as stabilizer. In the second step, this iron-containing monomer dispersion was used for making a miniemulsion polymerization thereof. <br /> <br /> The addition of lanthanide complexes to ester-containing monomers such as butyl acrylate and subsequent polymerization leading to the spontaneous formation of highly organized layered nanocomposites is presented in the final part of this thesis. By an one-step miniemulsion process, the formation of a lamellar structure within the polymer nanoparticles is achieved. The magnetization and the NMR relaxation measurements have shown these new layered nanocomposites to be very apt for application as contrast agent in magnetic resonance imaging.
7

Physical crosslinking of gelatin : a supramolecular approach to biomaterials

Zaupa, Alessandro January 2010 (has links)
This work describes the realization of physically crosslinked networks based on gelatin by the introduction of functional groups enabling specific supramolecular interactions. Molecular models were developed in order to predict the material properties and permit to establish a knowledge-based approach to material design. The effect of additional supramolecular interactions with hydroxyapaptite was then studied in composite materials. The calculated properties are compared to experimental results to validate the models. The models are then further used for the study of physically crosslinked networks. Gelatin was functionalized with desaminotyrosine (DAT) and desaminotyrosyl-tyrosine (DATT) side groups, derived from the natural amino acid tyrosine. These group can potentially undergo to π-π and hydrogen bonding interactions also under physiological conditions. Molecular dynamics (MD) simulations were performed on models with 0.8 wt.-% or 25 wt.-% water content, using the second generation forcefield CFF91. The validation of the models was obtained by the comparison with specific experimental data such as, density, peptide conformational angles and X-ray scattering spectra. The models were then used to predict the supramolecular organization of the polymer chain, analyze the formation of physical netpoints and calculate the mechanical properties. An important finding of simulation was that with the increase of aromatic groups also the number of observed physical netpoints increased. The number of relatively stable physical netpoints, on average zero 0 for natural gelatin, increased to 1 and 6 for DAT and DATT functionalized gelatins respectively. A comparison with the Flory-Rehner model suggested reduced equilibrium swelling by factor 6 of the DATT-functionalized materials in water. The functionalized gelatins could be synthesized by chemoselective coupling of the free carboxylic acid groups of DAT and DATT to the free amino groups of gelatin. At 25 wt.-% water content, the simulated and experimentally determined elastic mechanical properties (e.g. Young Modulus) were both in the order of GPa and were not influenced by the degree of aromatic modification. The experimental equilibrium degree of swelling in water decreased with increasing the number of inserted aromatic functions (from 2800 vol.-% for pure gelatin to 300 vol.-% for the DATT modified gelatin), at the same time, Young’s modulus, elongation at break, and maximum tensile strength increased. It could be show that the functionalization with DAT and DATT influences the chain organization of gelatin based materials together with a controlled drying condition. Functionalization with DAT and DATT lead to a drastic reduction of helical renaturation, that could be more finely controlled by the applied drying conditions. The properties of the materials could then be influenced by application of two independent methods. Composite materials of DAT and DATT functionalized gelatins with hydroxyapatite (HAp) show a drastic reduction of swelling degree. In tensile tests and rheological measurements, the composites equilibrated in water had increased Young’s moduli (from 200 kPa up to 2 MPa) and tensile strength (from 57 kPa up to 1.1 MPa) compared to the natural polymer matrix without affecting the elongation at break. Furthermore, an increased thermal stability from 40 °C to 85 °C of the networks could be demonstrated. The differences of the behaviour of the functionalized gelatins to pure gelatin as matrix suggested an additional stabilizing bond between the incorporated aromatic groups to the hydroxyapatite. / Diese Arbeit beschreibt die Entwicklung von durch spezifische physikalische Wechselwirkungen quervernetzten Gelatine-basierten Materialien. Dazu wurden zunächst Computermodelle entwickelt, mit denen Eigenschaften der Materialien vorhergesagt werden sollten, um so eine wissensbasierte Entwicklung zu ermöglichen, um dann die Ergebnisse mit experimentellen Daten zu vergleichen und die Materialien und Modelle als Grundlage für weitere Entwicklungen zu nutzen. Gelatine wurde mit Desaminotyrosin (DAT) und Desaminotyrosyltyrosin (DATT) funktionalisiert, die sich von der natürlichen Aminosäure Tyrosin ableiten. Diese Gruppen können potentiell π-π Wechselwirkungen und Wasserstoffbrückenbindungen auch unter physiologischen Bedingungen eingehen. Es wurden Computersimulationen der Materialien mittels Moleküldynamik durchgeführt, wobei Modelle mit 0.8 Gew.-% und 25 Gew.-% Wassergehalt betrachtet wurden. Die Validierung der Modelle erfolgte durch Vergleich der errechneten mit experimentellen Daten wie z.B. der Dichte, Bindungswinkeln sowie Röntgenstreuungsspektren. Die Modelle wurden dann zur Vorhersage der molekularen Organisation der Polymerketten, Formierung physikalischer Netzpunkte und Berechnung der mechanischen Eigenschaften eingesetzt. Die Funktionalisierung der Gelatine mit DAT bzw. DATT führten wie gewünscht zur Ausbildung physikalischer Netzpunkte durch π-π Wechselwirkungen und Wasserstoffbrücken¬bindungen. Ein Schlüsselergebnis der Simulationen war, dass mit zunehmender Zahl an aromatischen Gruppen auch eine Zunahme der physikalischen Netzpunkte beobachtet werden konnte. Die funktionalisierten Gelatinen konnten durch chemoselektive Reaktion der Aminogruppen der Gelatine mit den freien Carboxylgruppen von DAT und DATT hergestellt werden. Materialien mit 25 Gew.-% Wassergehalt hatten in der Simulation und im Experiment mechanische Eigenschaften derselben Größenordnung (z.B. E-Moduln im unteren GPa-Bereich). Der Quellungsgrad der Materialien im Experiment nahm mit zunehmender Zahl an aromatische Gruppen ab (von 2800 Vol.-% auf 300 Vol.-%), wobei der Elastizitätsmodul, die Bruchdehnung sowie die Zugfestigkeit zunahmen. Die Funktionalisierung der Gelatine ist eine chemische Methode, um die Kettenanordnung auf molekularer Ebene zu beeinflussen, während die genaue Kontrolle der Trocknungs¬bedinguungen von Gelatine-basierten Materialien eine physikalische Methode mit demselben Ziel ist. Es konnte gezeigt werden, dass die Funktionalisierung von Gelatine mit DAT oder DATT zu einer stark verminderten Helixausbildungstendenz, die jedoch durch Variation der Trocknunsgbedingungen noch fein abgestimmt werden konnte. Somit konnten die mechanischen Eigenschaften von Filmen aus funktionlisierter Gelatine mit zwei unabhängigen Methoden eingestellt werden. Komposite der mit DAT oder DATT funktionalisierten Gelatine und Hydroxyapatit (HAp) zeigten deutlich verringerter Quellung. In Zugdehnungsexperimenten und rheologischen Untersuchungen zeigten die Komposite im Gleichgewichtsquellungszustand erhöhte Elastizitätsmoduln (von 200 kPa auf bis zu 2 MPa) und Zugfestigkeit (von 57 kPa auf bis zu 1.1 MPa). Darüber hinaus konnte die Übergangstemperatur Tc deutlich gesteigert werden (von ca. 40 °C auf > 85 °C). Dieses Verhalten ließ sich auf stabilisierende Bindungen zwischen den aromatische Gruppen und dem HAp zurückführen.
8

Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders

Kim, Jin Young 18 June 2015 (has links) (PDF)
Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications. / Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten.
9

Salts as highly diverse porogens : functional ionic liquid-derived carbons and carbon-based composites for energy-related applications

Fechler, Nina January 2012 (has links)
The present thesis is to be brought into line with the current need for alternative and sustainable approaches toward energy management and materials design. In this context, carbon in particular has become the material of choice in many fields such as energy conversion and storage. Herein, three main topics are covered: 1)An alternative synthesis strategy toward highly porous functional carbons with tunable porosity using ordinary salts as porogen (denoted as “salt templating”) 2)The one-pot synthesis of porous metal nitride containing functional carbon composites 3)The combination of both approaches, enabling the generation of highly porous composites with finely tunable properties All approaches have in common that they are based on the utilization of ionic liquids, salts which are liquid below 100 °C, as precursors. Just recently, ionic liquids were shown to be versatile precursors for the generation of heteroatom-doped carbons since the liquid state and a negligible vapor pressure are highly advantageous properties. However, in most cases the products do not possess any porosity which is essential for many applications. In the first part, “salt templating”, the utilization of salts as diverse and sustainable porogens, is introduced. Exemplarily shown for ionic liquid derived nitrogen- and nitrogen-boron-co-doped carbons, the control of the porosity and morphology on the nanometer scale by salt templating is presented. The studies within this thesis were conducted with the ionic liquids 1-Butyl-3-methyl-pyridinium dicyanamide (Bmp-dca), 1-Ethyl-3-methyl-imidazolium dicyanamide (Emim-dca) and 1 Ethyl 3-methyl-imidazolium tetracyanoborate (Emim-tcb). The materials are generated through thermal treatment of precursor mixtures containing one of the ionic liquids and a porogen salt. By simple removal of the non-carbonizable template salt with water, functional graphitic carbons with pore sizes ranging from micro- to mesoporous and surface areas up to 2000 m2g-1 are obtained. The carbon morphologies, which presumably originate from different onsets of demixing, mainly depend on the nature of the porogen salt whereas the nature of the ionic liquid plays a minor role. Thus, a structural effect of the porogen salt rather than activation can be assumed. This offers an alternative to conventional activation and templating methods, enabling to avoid multiple-step and energy-consuming synthesis pathways as well as employment of hazardous chemicals for the template removal. The composition of the carbons can be altered via the heat-treatment procedure, thus at lower synthesis temperatures rather polymeric carbonaceous materials with a high degree of functional groups and high surface areas are accessible. First results suggest the suitability of the materials for CO2 utilization. In order to further illustrate the potential of ionic liquids as carbon precursors and to expand the class of carbons which can be obtained, the ionic liquid 1-Ethyl-3-methyl-imidazolium thiocyanate (Emim-scn) is introduced for the generation of nitrogen-sulfur-co-doped carbons in combination with the already studied ionic liquids Bmp-dca and Emim-dca. Here, the salt templating approach should also be applicable eventually further illustrating the potential of salt templating, too. In the second part, a one-pot and template-free synthesis approach toward inherently porous metal nitride nanoparticle containing nitrogen-doped carbon composites is presented. Since ionic liquids also offer outstanding solubility properties, the materials can be generated through the carbonization of homogeneous solutions of an ionic liquid acting as nitrogen as well as carbon source and the respective metal precursor. The metal content and surface area are easily tunable via the initial metal precursor amount. Furthermore, it is also possible to synthesize composites with ternary nitride nanoparticles whose composition is adjustable by the metal ratio in the precursor solution. Finally, both approaches are combined into salt templating of the one-pot composites. This opens the way to the one-step synthesis of composites with tunable composition, particle size as well as precisely controllable porosity and morphology. Thereby, common synthesis strategies where the product composition is often negatively affected by the template removal procedure can be avoided. The composites are further shown to be suitable as electrodes for supercapacitors. Here, different properties such as porosity, metal content and particle size are investigated and discussed with respect to their influence on the energy storage performance. Because a variety of ionic liquids, metal precursors and salts can be combined and a simple closed-loop process including salt recycling is imaginable, the approaches present a promising platform toward sustainable materials design. / Die vorliegende Arbeit basiert auf der Notwendigkeit für eine alternative und nachhaltige Energiewirtschaft sowie alternativer Herstellungsmethoden der damit verbundenen Materialien. Hierbei kommt besonders Kohlenstoffen und kohlenstoffbasierten Systemen eine hohe Bedeutung zu. Im Rahmen der Dissertation wurden drei Ansätze verfolgt, die zu der Entwicklung alternativer Strategien zur Herstellung poröser Heteroatom-enthaltender Kohlenstoffe und deren Komposite beitragen. Die Materialien wurden des Weiteren für die CO2 Nutzung sowie Energiespeicherung in Form von Superkondensatoren getestet. Allen Materialien ist gemeinsam, dass sie ausgehend von ionischen Flüssigkeiten, Salze mit einem Schmelzpunkt unterhalb von 100 °C, als Kohlenstoffvorstufe durch Hochtemperaturverfahren hergestellt wurden. Im ersten Teil wird ein alternatives und nachhaltiges Verfahren zur Herstellung hochporöser Stickstoff und Stickstoff-Bor-haltiger Kohlenstoffe vorgestellt. Bei dieser als „Salztemplatierung“ bezeichneten Methode werden herkömmliche Salze als Porogen verwendet. Damit sind sehr hohe Oberflächen erreichbar, die neben der Porengröße und dem Porenvolumen durch die Variation der Salzspezies und Salzmenge einstellbar sind. Dies bietet gegenüber herkömmlichen Templatierungsverfahren den Vorteil, dass das Salz nach erfolgter Karbonisierung der ionischen Flüssigkeit in Anwesenheit der nicht karbonisierbaren Salzspezies einfach mit Wasser auswaschbar ist. Hierbei ist ein Recyclingprozess denkbar. Bei hohen Synthesetemperaturen werden graphitische, bei niedrigen hochfunktionalisierte, polymerartige Produkte erhalten. Letztere erwiesen sich als vielversprechende Materialien für die CO2 Nutzung. Unter Verwendung einer bisher nicht eingesetzten ionische Flüssigkeit konnte weiterhin die Einführung von Schwefel als Heteroatom ermöglicht werden. Im zweiten Teil wird eine Templat-freie Einschrittsynthese von porösen Kompositen aus Metallnitrid Nanopartikeln und Stickstoff-dotiertem Kohlenstoff vorgestellt. Die Materialien werden ausgehend von einer Lösung aus einer ionischen Flüssigkeit und einem Metallvorläufer hergestellt, wobei die ionische Flüssigkeit sowohl als Kohlenstoffvorläufer als auch als Stickstoffquelle für die Metallnitride dient. Der Metallgehalt, das Metallverhältnis in ternären Nitriden und die Oberfläche sind über den Anteil des Metallvorläufers einstellbar. Schließlich werden beide Ansätze zur Salztemplatierung von den Kompositen kombiniert. Dadurch wird die Einschrittsynthese von Kompositen mit einstellbarer Oberfläche, Zusammensetzung, Partikelgröße und Morphologie ermöglicht. Diese Materialien wurden schließlich als Elektroden für Superkondensatoren getestet und der Einfluss verschiedener Parameter auf die Leistungsfähigkeit untersucht. Aufgrund verschiedener Kombinationsmöglichkeiten von ionischen Flüssigkeiten, Metallvorläufern und Salzen, stellen die hier präsentierten Ansätze eine vielversprechende Plattform für die nachhaltige Materialsynthese dar.
10

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 24 February 2014 (has links) (PDF)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.

Page generated in 0.069 seconds