Return to search

Generalized convolution operators and asymptotic spectral theory

The dissertation contributes to the further advancement of the theory of various classes of discrete and continuous (integral) convolution operators. The thesis is devoted to the study of sequences of matrices or operators which are built up in special ways from generalized discrete or continuous convolution operators. The generating functions depend on three variables and this leads to considerably more complicated approximation sequences. The aim was to obtain for each case a result analogous to the first Szegö limit theorem providing the first order asymptotic formula for the spectra of regular convolutions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200602061
Date14 December 2006
CreatorsZabroda, Olga Nikolaievna
ContributorsTU Chemnitz, Fakultät für Mathematik, Prof. Dr. Bernd Silbermann, Prof. Dr. Bernd Silbermann, Prof. Dr. Torsten Ehrhardt, Prof. Dr. Sergei Grudsky
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip
RightsDokument ist für Print on Demand freigegeben

Page generated in 0.0018 seconds