Spelling suggestions: "subject:"grenzwerte"" "subject:"grenzwert""
1 |
Moment conditions for weighted branching processes /Kuhlbusch, Dirk. January 2004 (has links)
University, Diss.--Münster, 2004.
|
2 |
Ein universeller zentraler Grenzwertsatz für den Abstand zweier Kugeln in zufälligen SplitbäumenRyvkina, Jelena. Unknown Date (has links)
Univ., Diplomarbeit, 2008--Frankfurt (Main). / Übers. des Hauptsacht.: A universal central limit theorem for the distance of two balls in random split trees.
|
3 |
Limit theorems for quantum entropiesBjelaković, Igor. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Berlin.
|
4 |
On the microscopic limit for the existence of local temperatureHartmann, Michael. January 2005 (has links)
Stuttgart, Univ., Diss., 2005.
|
5 |
Second-order trace formulas in Szegö-type theoremsVasil'ev, Vladimir A., Silbermann, Bernd. January 2007 (has links)
Chemnitz, Techn. Univ., Masterarb., 2002.
|
6 |
Generalized convolution operators and asymptotic spectral theoryZabroda, Olga Nikolaievna 14 December 2006 (has links) (PDF)
The dissertation contributes to the further advancement of the theory of various classes of discrete and continuous (integral) convolution operators. The thesis is devoted to the study of sequences of matrices or operators which are built up in special ways from generalized discrete or continuous convolution operators. The generating functions depend on three variables and this leads to considerably more complicated approximation sequences. The aim was to obtain for each case a result analogous to the first Szegö limit theorem providing the first order asymptotic formula for the spectra of regular convolutions.
|
7 |
Generalized convolution operators and asymptotic spectral theoryZabroda, Olga Nikolaievna 11 December 2006 (has links)
The dissertation contributes to the further advancement of the theory of various classes of discrete and continuous (integral) convolution operators. The thesis is devoted to the study of sequences of matrices or operators which are built up in special ways from generalized discrete or continuous convolution operators. The generating functions depend on three variables and this leads to considerably more complicated approximation sequences. The aim was to obtain for each case a result analogous to the first Szegö limit theorem providing the first order asymptotic formula for the spectra of regular convolutions.
|
8 |
Limit theorems for statistical functionals with applications to dimension estimation / Grenzwertsätze für statistische Funktionale mit Anwendungen auf DimensionsschätzungenMin, Aleksey 23 June 2004 (has links)
No description available.
|
9 |
Second-Order Trace Formulas in Szegö-type TheoremsVasilyev, Vladimir 15 February 2007 (has links) (PDF)
A new way of proof of Szegö-type theorems is
presented. The idea of the proof is based on the
construction of "almost" inverse operator to
the finite section T_n(a) of a Toeplitz operator T(a),
which is close to the inverse operator in the trace
norm (these "almost" inverses are well-known).
This way of proof gives the possibility to write
another representation for the second constant
E_f(a), and in the scalar case to receive a
shorter representation. Another observation is
that the convergence in these theorems is
strongly dependent on the smoothness of the
generating function a.
|
10 |
On the error-bound in the nonuniform version of Esseen's inequality in the Lp-metricPaditz, Ludwig 25 June 2013 (has links) (PDF)
The aim of this paper is to investigate the known nonuniform version of Esseen's inequality in the Lp-metric, to get a numerical bound for the appearing constant L.
For a long time the results given by several authors constate the impossibility of a nonuniform estimation in the most interesting case δ=1, because the effect L=L(δ)=O(1/(1-δ)), δ->1-0, was observed, where 2+δ, 0<δ<1, is the order of the assumed moments of the considered independent random variables X_k, k=1,2,...,n. Again making use of the method of conjugated distributions, we improve the well-known technique to show in the most interesting case δ=1 the finiteness of the absolute constant L and to prove L=L(1)=<127,74*7,31^(1/p), p>1.
In the case 0<δ<1 we only give the analytical structure of L but omit numerical calculations. Finally an example on normal approximation of sums of l_2-valued random elements demonstrates the application of the nonuniform mean central limit bounds obtained here. / Das Anliegen dieses Artikels besteht in der Untersuchung einer bekannten Variante der Esseen'schen Ungleichung in Form einer ungleichmäßigen Fehlerabschätzung in der Lp-Metrik mit dem Ziel, eine numerische Abschätzung für die auftretende absolute Konstante L zu erhalten.
Längere Zeit erweckten die Ergebnisse, die von verschiedenen Autoren angegeben wurden, den Eindruck, dass die ungleichmäßige Fehlerabschätzung im interessantesten Fall δ=1 nicht möglich wäre, weil auf Grund der geführten Beweisschritte der Einfluss von δ auf L in der Form L=L(δ)=O(1/(1-δ)), δ->1-0, beobachtet wurde, wobei 2+δ, 0<δ<1, die Ordnung der vorausgesetzten Momente der betrachteten unabhängigen Zufallsgrößen X_k, k=1,2,...,n, angibt.
Erneut wird die Methode der konjugierten Verteilungen angewendet und die gut bekannte Beweistechnik verbessert, um im interessantesten Fall δ=1 die Endlichkeit der absoluten Konstanten L nachzuweisen und um zu zeigen, dass L=L(1)=<127,74*7,31^(1/p), p>1, gilt.
Im Fall 0<δ<1 wird nur die analytische Struktur von L herausgearbeitet, jedoch ohne numerische Berechnungen. Schließlich wird mit einem Beispiel zur Normalapproximation von Summen l_2-wertigen Zufallselementen die Anwendung der gewichteten Fehlerabschätzung im globalen zentralen Grenzwertsatz demonstriert.
|
Page generated in 0.0606 seconds