Soit G un groupe algébrique réel simple de rang réel au moins 2 et P un sous-groupe parabolique de G. On montre que tout sous-groupe discret de G intersectant le radical unipotent de P en un réseau est un réseau aritmétique de G, sauf éventuellement lorsque G = SO(2,4n+2) et P est le stabilisateur d'un 2-plan isotrope. Ceci répond partiellement à une conjecture de Margulis, déjà étudiée par Hee Oh. On étudie aussi le cas où G est le produit de plusieurs groupes de rang 1, généralisant des résultats de Selberg, Benoist et Oh. / Let G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLS579 |
Date | 22 December 2017 |
Creators | Miquel, Sebastien |
Contributors | Université Paris-Saclay (ComUE), Benoist, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds