Cette thèse porte sur les plongements d'espaces homogènes sphériques sur un corps quelconque. Dans une première partie, on aborde la classification de ces plongements, dans la lignée des travaux de Demazure et bien d'autres sur les variétés toriques, et de Luna, Vust et Knop sur les variétés sphériques. Dans une seconde partie, on généralise en caractéristique positive certains résultats obtenus par Bien et Brion portant sur les plongements complets et lisses qui sont log homogènes, c'est-à-dire dont le bord est un diviseur à croisements normaux et le fibré tangent logarithmique associé est engendré par ses sections globales. Dans une dernière partie, on construit par éclatements successifs une compactification lisse et log homogène explicite du groupe linéaire (différente de celle obtenue par Kausz). En prenant dans cette compactification les points fixes de certains automorphismes, on en déduit alors la construction de compactifications lisses et log homogènes de certains groupes semi-simples classiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00716402 |
Date | 29 November 2011 |
Creators | Huruguen, Mathieu |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0027 seconds