Entender como as galáxias se formam e evoluem ao longo do tempo é um dos maiores desafio da cosmologia moderna. Vários processos estão presentes na formação de galáxias, tais como o feedback de supernovas e núcleos galácticos ativos, evolução química e dinâmica, e também efeitos ambientais. Esta tese abrange estes processos, a partir de um ponto de vista observacional. A Via Láctea tem um papel fundamental na compreensão dos vários processos envolvidos na formação de uma galáxia, e começamos nosso projeto estudando nossa própria galáxia. Diferentes processos deixam assinaturas típicas na distribuição de velocidades e metalicidades das estrelas. Por esta razão, combinando cinemática e abundâncias químicas, foi possível determinar a origem de uma amostra de estrelas velhas e ricas em metais. Compreender como e onde essas estrelas se formaram está intimamente relacionado com mecanismos presentes na evolução do disco Galáctico. Apesar de não podermos observar estrelas individuais em galáxias distantes, somos capazes de inferir a história de formação destas galáxias combinando modelos de população estelar simples, de forma a reproduzir o espectro observado. Usando esta metodologia, foi possível traçar a história de formação estelar de galáxias elípticas, e dessa forma restringir os mecanismos de feedback que regulam a formação de estrelas em halos. No cenário Lambda-CDM, as estruturas menores são formadas primeiro, e então elas se agrupam, formando assim estruturas cada vez maiores. As galáxias, ao serem incorporadas à sistemas maiores, sofrem os efeitos de diversos processos que atuam em ambientes de alta densidade, mudando assim suas propriedades. Desta forma, a evolução das galáxias e a formação de estruturas em grande escala andam lado a lado, como mostramos em nosso estudo de propriedades de galáxias em grupos. Exploramos a distribuição espacial das galáxias na vizinhança de grupos, e também usamos a distribuição de velocidades das galáxias para determinar o estágio evolutivo do grupo. Foram encontradas correlações importantes entre o estágio evolutivo do grupo e as populações de galáxias que nestes residem. / Understanding the way galaxies form and evolve throughout the cosmic time remains one of the greatest challenges of modern cosmology. Several processes are known to play a role in the formation of galaxies, such as feedback from supernovae and active galactic nuclei, chemical and dynamical evolution and environmental effects. This thesis encompasses these processes, from an observational point of view. The Milky Way plays a pivotal role in understanding the various processes involved in the formation of a galaxy, and we start our understanding program by studying our own Galaxy. Different formation processes leave typical signatures in the velocity and metallicity distribution of stars. For this reason, we were able to trace the origin of old and metal-rich stars by combining their kinematics and chemical abundances. Understanding how and where these stars were formed is closely related to mechanisms driving the evolution of the Galactic disk. Although we cannot observe individual stars in distant galaxies, only the integrated spectra, we are able to infer the mass assembly history of galaxies by combining single stellar population (SSP) models that reproduce the observed spectrum. Using this methodology, we traced the star formation history of elliptical galaxies and, by studying the signatures left in the star formation history, we were able to constrain the feedback mechanisms regulating the star formation within halos. In the LCDM scenario, small scale structures are formed first, and then they merge forming larger and larger structures. Therefore, galaxies grow into more and more massive systems, and processes operating in these high-density environments change their properties. For this reason, galaxy evolution and formation of large-scale structures go hand in hand, as we show in our study of properties of galaxies in groups. We explored the spatial distribution of galaxies within and in the surrounding of groups, and we also used the velocity distribution of galaxies as a probe of the evolutionary stage of the group. We found important correlations between the evolutionary stage of the group and the population of galaxies residing within it.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18042012-162353 |
Date | 13 March 2012 |
Creators | Trevisan, Marina |
Contributors | Barbuy, Beatriz Leonor Silveira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds