Titre de l'écran-titre (visionné le 29 juin 2023) / Le polydiméthylsiloxane (PDMS) est un matériau polyvalent en raison de sa biocompatibilité, de son inertie, de sa durabilité, de son élasticité, de sa transparence, de son faible coût, de sa grande disponibilité et de sa facilité de fabrication. Ce matériau a prouvé son importance dans de nombreux domaines en agissant comme matériau hôte pour les nanoparticules et le milieu de gain pour produire un système laser aléatoire largement ajustable. La photosensibilité des matériaux est un paramètre clé pour la fabrication de dispositifs pour une variété d'applications telles que les télécommunications, la détection et les lasers. Par conséquent, cette thèse porte sur une méthodologie expérimentale de fabrication de nouveaux matériaux photosensibles à base de PDMS ainsi que sur l'élaboration d'un laser aléatoire élastomère stable (SERL) composé en combinaison avec un matériau inorganique, Nd:YAB (NdxY1-xAl₃B₄O₁₂), les intégrer dans des guides d'ondes photoniques en silicone et explorer leurs applications. Tout d'abord, des stratégies ont été développées pour rendre le PDMS photosensible pour l'écriture femtoseconde (fs). Nous avons utilisé un laser femtoseconde pour écrire directement dans les PDMS, ainsi que de matériaux vitreux photosensibles sous la forme de PDMS chargés de nouveaux dérivés de germanium (Ge) et d'autres initiateurs pouvant agir en tant que photosensibilisateurs, afin d'obtenir le changement d'indice de réfraction le plus élevé sans compromettre de manière significative, conduisant à une écriture optimale de guides d'ondes ou de dispositifs photoniques dans un tel hôte souple. De plus, des réseaux de diffraction de Bragg hautement accordables ont été intégrés à l'intérieur des PDMS. Pour le développement de futurs dispositifs, nous avons exploré l'effet de l'écriture laser fs sur la structure du polymère ainsi que de leurs propriétés mécaniques et optiques. Ensuite, dans la deuxième approche de cette étude de doctorat, un système de laser aléatoire élastomère (SERL) très stable composé de deux matériaux stables : nanoparticules inorganiques Nd:YAB (NdₓY₁₋ₓ Al₃(BO₃)₄) et polydiméthylsiloxane (PDMS) a été fabriqué. Ce RL très stable est le premier système élastomère, donc accordable, qui permet l'étude systématique de la stabilité. Nous avons pu explorer les aspects d'adaptabilité du système RL en étirant le composite PDMS et en explorant l'aspect multidirectionnel du laser. En tant qu'application nécessitant un fonctionnement à long terme, un comportement statistique de type Lévy a également été démontré. / Polydimethylsiloxane (PDMS) is a versatile material due to its biocompatibility, inertness, durability, elasticity, transparency, low cost, wide availability, and ease of manufacture. This material has proved its importance in many fields by acting as a host material for nanoparticles and gain medium to produce a widely tunable random lasing system. Photosensitivity of materials has been shown to be a key parameter for the fabrication of devices for a variety of applications such as in telecommunications, sensing and lasers. Hence, this thesis involves the experimental methodology for fabricating novel photosensitive materials based on PDMS as well as the realization of a Stable Elastomeric Random Laser (SERL) composed in combination with an inorganic material, Nd:YAB (NdₓY₁₋ₓAl₃B₄O₁₂), for integration into silicone photonic waveguides and exploration of potential applications. Firstly, a strategy has been developed to render PDMS photosensitive for femtosecond (fs) writing. We then used a femtosecond laser to write directly into PDMS, as well as into a new photosensitive glassy material in the form of PDMS loaded with novel germanium (Ge)-derivatives and other initiators as photosensitizers. This combination yielded a higher refractive index material for optimal writing of waveguides or photonic devices in a very soft host. In addition, for the first time to the best of our knowledge, highly tunable Bragg diffraction gratings were embedded inside the bulk PDMS. For future device engineering, the effect of fs laser writing on the polymer structure, mechanical and optical properties has been explored. Then, in the second approach of a very stable elastomeric random laser (SERL) system composed of two stable materials: inorganic Nd:YAB (NdₓY₁₋ₓ Al₃(BO₃)₄)-nanoparticles and polydimethylsiloxane (PDMS) has been fabricated. This very stable RL is the first elastomeric system, hence tunable, which allows the systematic investigation of stability. The tunability aspects of the RL system has been investigated by stretching the PDMS composite and explored the multi-directionality of lasing. As an application which requires long term operation, Levy-like statistical behavior were also demonstrated.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/120109 |
Date | 21 November 2023 |
Creators | Rih Hlil, Antsar |
Contributors | Kashyap, Raman, Messaddeq, Younès |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xiv, 208 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0027 seconds