Return to search

Lane Change Prediction in the Urban Area

The development of Advanced Driver Assistance Systems and autonomous driving is one of the main research fields in the area of vehicle development today. Initially the research in this area focused on analyzing and predicting driving maneuvers on highways. Nowadays, a vast amount of research focuses on urban areas as well. Driving maneuvers in urban areas are more complex and therefore more difficult to predict than driving maneuvers on highways. The goals of predicting and understanding driving maneuvers are to reduce accidents, to improve traffic density, and to develop reliable algorithms for autonomous driving. Driving behavior during different driving maneuvers such as turning at intersections, emergency braking or lane changes are analyzed.
This thesis focuses on the driving behavior around lane changes and thus the prediction of lane changes in the urban area is applied with an Echo State Network. First, existing methods with a special focus on input variables and results were evaluated to derive input variables with regard to lane change and no lane change sequences. The data for this first analyses were obtained from a naturalistic driving study. Based on theses results the final set of variables (steering angle, turn signal and gazes to the left and right) was chosen for further computations.
The parameters of the Echo State Network were then optimized using the data of the naturalistic driving study and the final set of variables. Finally, left and right lane changes were predicted. Furthermore, the Echo State Network was compared to a feedforward neural network. The Echo State Network could predict left and right lane changes more successful than the feedforward neural network. / Fahrerassistenzsysteme und Algorithmen zum autonomen Fahren stellen ein aktuelles Forschungsfeld im Bereich der Fahrzeugentwicklung dar. Am Anfang wurden vor allem Fahrmanöver auf der Autobahn analysiert und vorhergesagt, mittlerweile hat sich das Forschungsfeld auch auf den urbanen Verkehr ausgeweitet. Fahrmanöver im urbanen Raum sind komplexer als Fahrmanöver auf Autobahnen und daher schwieriger vorherzusagen. Ziele für die Vorhersage von Fahrmanövern sind die Reduzierung von Verkehrsunfällen, die Verbesserung des Verkehrsflusses und die Entwicklung von zuverlässigen Algorithmen für das autonome Fahren. Um diese Ziele zu erreichen, wird
das Fahrverhalten bei unterschiedlichen Fahrmanövern analysiert, wie z.B. beim Abbiegevorgang an Kreuzungen, bei der Notbremsung oder beim Spurwechsel.
In dieser Arbeit wird der Spurwechsel im urbanen Straßenverkehr mit einem Echo State Network vorhergesagt. Zuerst wurden existierende Methoden zur Spurwechselvorhersage bezogen auf die Eingaben und die Ergebnisse bewertet, um danach die spurwechselbezogenen Variableneigenschaften bezüglich Spurwechsel- und Nicht-Spurwechselsequenzen zu analysieren. Die Daten, die Basis für diese ersten Untersuchungen waren, stammen aus einer Realfahrstudie. Basierend auf diesen Resultaten wurden die finalen Variablen (Lenkwinkel, Blinker und Blickrichtung) für weitere Berechnungen ausgewählt.
Mit den Daten aus der Realfahrstudie und den finalen Variablen wurden die Parameter des Echo State Networks optimiert und letztendlich wurden linke und rechte Spurwechsel vorhergesagt. Zusätzlich wurde das Echo State Network mit einem vorwärtsgerichteten neuronalen Netz verglichen. Das Echo State Network konnte linke und rechte Spurwechsel erfolgreicher vorhersagen als das vorwärtsgerichtete neuronale Netz.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34546
Date18 July 2019
CreatorsGriesbach, Karoline
ContributorsHoffmann, Karl Heinz, Krems, Josef F., Hoffmann, Karl Heinz, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds