Return to search

Enhanced oil recovery of heavy oils by non-thermal chemical methods

It is estimated that the shallow reservoirs of Ugnu, West Sak and Shraeder Bluff in the North Slope of Alaska hold about 20 billion barrels of heavy oil. The proximity of these reservoirs to the permafrost makes the application of thermal methods for the oil recovery very unattractive. It is feared that the heat from the thermal methods may melt this permafrost leading to subsidence of the unconsolidated sand (Marques 2009; Peyton 1970; Wilson 1972). Thus it is necessary to consider the development of cheap non-thermal methods for the recovery of these heavy oils.
This study investigates non-thermal techniques for the recovery of heavy oils. Chemicals such as alkali, surfactant and polymer are used to demonstrate improved recovery over waterflooding for two oils (A:10,000cp and B:330 cp). Chemical screening studies showed that appropriate concentrations of chemicals, such as alkali and surfactant, could generate emulsions with oil A. At low brine salinity oil-in-water (O/W) emulsions were generated whereas water-in-oil (W/O) emulsions were generated at higher salinities. 1D and 2D sand pack floods conducted with alkali surfactant (AS) at different salinities demonstrated an improvement of oil recovery over waterflooding. Low salinity AS flood generated lower pressure drop, but also resulted in lower oil recovery rates. High salinity AS flood generated higher pressure drop, high viscosity emulsions in the system, but resulted in a greater improvement in oil recovery over waterfloods.
Polymers can also be used to improve the sweep efficiency over waterflooding. A 100 cp polymer flood improved the oil recovery over waterflood both in 1D and 2D geometry. In 1D geometry 1PV of polymer injection increased the oil recovery from 30% after waterflood to 50% OOIP. The tertiary polymer injection was found to be equally beneficial as the secondary polymer injection. It was also found that the combined application of AS and polymer did not give any major advantage over polymer flood or AS flood alone.
Chemical EOR technique was considered for the 330cp oil B. Chemical screening studies showed that microemulsions could be generated in the system when appropriate concentrations of alkali and surfactant were added. Solubilization ratio measurement indicted that the interfacial tension in the system approached ultra-low values of about 10-3 dynes/cm. The selected alkali surfactant system was tested in a sand pack flood. Additionally a partially hydrolyzed polymer was used to provide mobility control to the process. The tertiary injection of ASP (Alkali-Surfactant-Polymer) was able to improve the oil recovery from 60% OOIP after the waterflood to almost 98% OOIP.
A simple mathematical model was built around viscous fingering phenomenon to match the experimental oil recoveries and pressure drops during the waterflood. Pseudo oil and water relative permeabilities were calculated from the model, which were then used directly in a reservoir simulator in place of the intrinsic oil-water relative permeabilities. Good agreement with the experimental values was obtained.
For history matching the polymer flood of heavy oil, intrinsic oil-water relative permeabilities were found to be adequate. Laboratory data showed that polymer viscosity is dependent on the polymer concentration and the effective brine salinity. Both these effects were taken into account when simulating the polymer flood or the ASP flood.
The filtration theory developed by Soo and Radke (1984) was used to simulate the dilute oil-in-water emulsion flow in the porous media when alkali-surfactant flood of the heavy oil was conducted. The generation of emulsion in the porous media is simulated via a reaction between alkali, surfactant, water and heavy oil. The theory developed by Soo and Radke (1984) states that the flowing emulsified oil droplets clog in pore constrictions and on the pore walls, thereby restricting flow. Once captured, there is a negligible particle re-entrainment. The simulator modeled the capture of the emulsion droplets via chemical reaction. Next, the local water relative permeability was reduced as the trapping of the oil droplets will reduce the mobility of the water phase. This entrapment mechanism is responsible for the increase in the pressure drop and improvement in oil recovery. The model is very sensitive to the reaction rate constants and the oil-water relative permeabilities.
ASP process for lower viscosity 330 cp oil was modeled using the UTCHEM multiphase-multicomponent simulator developed at the University of Texas at Austin. The simulator can handle the flow of three liquid phases; oil, water and microemulsion. The generation of microemulsion is modeled by the reaction of the crude oil with the chemical species present in the aqueous phase. The experimental phase behavior of alkali and surfactant with the crude oil was modeled using the phase behavior mixing model of the simulator. Oil and water relative permeabilities were enhanced where microemulsion is generated and interfacial tension gets reduced. Experimental oil recovery and pressure drop data were successfully history matched using UTCHEM simulator. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/21474
Date07 October 2013
CreatorsKumar, Rahul, active 2013
Source SetsUniversity of Texas
Languageen_US
Detected LanguageEnglish
Formatapplication/pdf

Page generated in 0.0021 seconds