Return to search

Polinomų aukščiai / Heights of Polynomials

Jono Jankausko disertacijos "Polinomų aukščiai" matematikos Disertacijoje yra sprendžiami matematiniai uždaviniai susiję su polinomų (algebrinių daugianarių) aukščiais. Nagrinėjami vieno kintamojo polinomai su realiais ir kompleksiniais koeficientais. Polinomo aukštis, bendriausia prasme, yra dydis kuriuo matuojame polinomo sudėtingumą. Yra keletas plačiai naudojamų polinomų aukščių: naivusis aukštis H(P), polinomo ilgis L(P), Euklidinė norma ||P||, Malerio matas M(P) bei integralinės normas ||P||s.
Polinomų aukščiai yra labai svarbūs šiuolaikinėje skaičių teorijoje, ypač diofantinėje analizėje bei įvairiose matematinės analizės šakose: aproksimavimo teorijoje erdvėse Ls ir C, Fourier analizėje, funkcinėje analizėje, ir kitur. Polinomų aukščiai turi praktinių taikymų signalų apdorojimo teorijoje, kur jie yra naudojami matuojant signalo energiją.
Disertacijos mokslinių tyrimų problema: kaip daugianarių aukščiai įtakoja daugianarių savybes -- daugianarių dalumą, realiųjų daugianarių ir sveikųjų daugianarių žieduose R[x] ir Z[x], redukuojamumą, daugianarių ekstremalias reikšmes. Disertacijoje tiriamos algebrinių skaičių aritmetinės savybės, kurios priklauso nuo tų skaičių minimalių polinomų aukščių. Nagrinėjama daugianarių su mažais koeficientais {-1, 0, 1} kompleksinių šaknų aibė. Konstruojamos skaičiavimo sistemos algebrinių skaičių žieduose bei tiriami metriniai Malerio matai. Įrodomos nelygybės daugianarių ir jų išvestinių Malerio matams bei jų normoms erdvėje Ls... [toliau žr. visą tekstą] / The doctoral dissertation deals with mathematical problems related to various heights of polynomials. The height of a polynomial, in the most general sense, is a quantity by which we measure the complexity of the polynomial P. There are several different types of heights: the naive height H(P), the length L(P), the Euclidean norm ||P||, the Mahler measure M(P) or the integral norms ||P||s.
The doctoral dissertation is devoted to study algebraic, analytical and number theoretical properties of polynomials which depend on heights. We consider the height reduction problem for polynomials in R[x] and maxima of polynomials with restricted coefficients on the unit circle. The properties of algebraic numbers whose minimal polynomials have small integer coefficients {-1, 0, 1} are investigated with a special attention to Newman and Littlewood polynomials. We explore the arithmetic and geometric properties of algebraic numbers which are roots of trinomial or quadrinomial equations in connection with the intersection problem of the geometric and arithmetic progressions of real numbers. The reducibility problem of Walsh is solved. The problem of construction of number systems in the rings Z[α] is studied for expanding algebraic integers α, together with metric versions of Mahler measures. We prove inequalities for the Mahler measures and Ls norms of the derivatives of self – inversive polynomials. Polynomials which are related to Barker sequences are investigated. A composition equation... [to full text]

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2012~D_20121017_111744-18129
Date17 October 2012
CreatorsJankauskas, Jonas
ContributorsStepanauskas, Gediminas, Smyth, Christopher James, Grigelionis, Bronius, Laurinčikas, Antanas, Kačinskaitė, Roma, Manstavičius, Eugenijus, Šiaučiūnas, Darius, Vilnius University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeDoctoral thesis
Formatapplication/pdf
Sourcehttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121017_111744-18129
RightsUnrestricted

Page generated in 0.0026 seconds