Este trabalho é constituido por duas partes. Na primeira parte, obtivemos algumas generalizações do clássico Teorema de Borsuk-Ulam em termos de (H,G)-coincidências. Na segunda parte, estendemos a caracterização dos germes de aplicações triviais, em codimensão 3, pelas fibrações de Milnor iniciada por Church e Lamotke em [11]. Usamos essa caracterização na classificação global de singularidades isoladas em dimensões (6, 3) / This work consists of two parts. In the first part, we obtain some generalizations of the classical Borsuk-Ulam Theorem in terms of (H,G)-coincidences. In the second part, we extend the characterization of trivial map germs, in codimension 3, by the Milnor fibrations started by Church and Lamotke in [11]. We use this characterization in the global classification of isolated singularities in dimensions (6, 3)
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10062013-161959 |
Date | 28 March 2013 |
Creators | Souza, Taciana Oliveira |
Contributors | Funar, Louis, Mattos, Denise de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds