This report explores if Monte-Carlo Tree Search (MCTS) can perform well in Fox Game, a classic Scandinavian strategy game. MCTS is implemented using a cutoff in the simulation phase. The game state is then evaluated using a heuristic function that is formulated using theoretical arguments from its chess counterpart. MCTS is shown to perform on the same level as highly experienced human players using limited computational resources. The method is used to explore how the imbalance in Fox Game (favoring sheep) can be mended by reducing the number of sheep pieces from 20 to 18. / I denna rapport undersöks om Monte-Carlo trädsökning (MCTS) kan prestera väl i rävspel, ett klassiskt skandinaviskt strategispel. MCTS implementeras med en cutoff i simuleringsfasen. Speltillståndet utvärderas där med hjälp av en heuristisk funktion som formuleras med hjälp av teoretiska argument från dess motsvarighet i schack. MCTS med endast begränsade beräkningsresurser visas kunna prestera på samma nivå som mycket erfarna människor. Metoden används för att utforska hur obalansen i rävspel (som gynnar får) kan förbättras genom att minska antalet fårpjäser från 20 till 18. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-323739 |
Date | January 2022 |
Creators | Janshagen, Anton, Mattsson, Olof |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:182 |
Page generated in 0.0019 seconds