摘要 i
Abstract ii
誌謝 iv
表目錄 vii
圖目錄 1
一、 緒論 6
1-1前言 6
1-2研究動機與目的 7
1-3氫氧化鋁介紹 8
1-3-1氫氧化鋁結構 9
1-3-2氫氧化鋁之應用 10
1-4氧化鋁介紹 11
1-4-1氧化鋁晶型及結構 13
1-4-2氧化鋁之應用 16
二、 文獻回顧 17
2-1電漿定義及特徵 17
2-1-1非熱電漿之理論 21
2-1-2液相脈衝電漿之原理 24
2-1-3顆粒形成流程 28
2-1-4電漿法製備無機物粉末 30
2-2 製備α相氧化鋁粉末 41
2-2-1拜耳法 43
2-2-2溶膠凝膠法 48
2-2-3水熱法 50
2-2-4機械球磨法 56
2-2-5沉澱法 57
2-2-6燃燒法 59
三、 實驗方法與步驟 60
3-1實驗藥品與設備 60
3-2研究內容 63
3-3實驗流程與架構 65
3-4 本實驗設計之綠能特色 68
四、 結果與討論 69
4-1 氫氧化鋁之產量及反應機構 69
4-2氫氧化鋁之X-Ray繞射儀分析(X-Ray Diffractometer,XRD) 74
4-3氫氧化鋁之EDS(X-Ray energy dispersive spectrometer)分析 77
4-4氫氧化鋁之FE-SEM分析 78
4-5氫氧化鋁之粒徑分析 91
4-6氫氧化鋁之比表面積分析分析 94
4-7氧化鋁之鍛燒溫度探討 98
4-8氧化鋁之持溫時間探討 105
4-9氧化鋁添加硝酸銀之探討 111
4-10氧化鋁添加造孔劑之探討 118
五、 結論 124
六、 未來工作 126
參考文獻 127
Identifer | oai:union.ndltd.org:TW/102YUNT0661021 |
Date | January 1900 |
Creators | 廖冠宇, Guan-Yu Liao |
Contributors | 楊肇政, Chao-Chen Yang |
Publisher | 國立雲林科技大學, 化學工程與材料工程系 |
Source Sets | National Digital Library of Theses and Dissertations in Taiwan |
Language | 中文 |
Detected Language | Unknown |
Type | 碩士 |
Format | 142 |
Relation | 1.Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58. 2.李典益, 離子液體分子為模板應用於中孔洞單水鋁礦與 γ-氧化鋁之合成. 成功大學化學系學位論文, 2007: p. 1-110. 3.張沛翎, 粉體粒徑對 gibbsite 至 α-Al2O3 相轉換的影響. 成功大學資源工程學系學位論文, 2008: p. 1-140. 4.Al’myasheva, O., et al., Preparation of nanocrystalline alumina under hydrothermal conditions. Inorganic materials, 2005. 41(5): p. 460-467. 5.Wefers, K. and L. Hart, Alumina chemicals: science and technology handbook. The American Ceramic Society, Westerville, Ohio, 1990: p. 13. 6.黃啟祥,林江財, 陶瓷技術手冊(下). 中華民國產業科技發展協進會與中華民國粉末冶金協會, 1994: p. 683-685. 7.Wefers, K. and C. Misra, Oxides and Hydroxides of Aluminum.(Report). Aluminum Company of America, 92, 1987: p. 1987. 8.Levin, I. and D. Brandon, Metastable alumina polymorphs: crystal structures and transition sequences. Journal of the American Ceramic Society, 1998. 81(8): p. 1995-2012. 9.廖原章, 次微米級氫氧化鋁粉末之製備及其熱性質分析之研究. 2005. 10.Xie, Z.-P., et al., Influence of α-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide. Materials Letters, 2003. 57(16): p. 2501-2508. 11.吴爭平, et al., 不同晶型氫氧化铝的反應活性與微觀键力分析. 中国有色金属學报, 2008. 18(E01): p. 251-258. 12.WU, Z.-p., et al., DFT calculation on microcosmic combination of favorable growth unit of gibbsite. Journal of Central South University (Science and Technology), 2009. 3: p. 012. 13.Pradhan, J., et al., Wet chemical synthesis of low bulk density aluminium hydroxide powder. Journal of Chemical Technology and Biotechnology, 2003. 78(5): p. 577-581. 14.Beyer, G., Flame retardant properties of EVA‐nanocomposites and improvements by combination of nanofillers with aluminium trihydrate. Fire and Materials, 2001. 25(5): p. 193-197. 15.Hull, T.R., et al., An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials. Polymer Degradation and Stability, 2003. 82(2): p. 365-371. 16.Downs, A.J., Chemistry of aluminium, gallium, indium, and thallium. 1993: Springer. 17.Xie, Z.-P., et al., Influence of different seeds on transformation of aluminum hydroxides and morphology of alumina grains by hot-pressing. Materials & design, 2003. 24(3): p. 209-214. 18.Men, Y., et al., A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine, 1995. 13(7): p. 683-689. 19.Richard A. Goldsby, T.J.K., Barbara A. Osborne, Immunology. 2002, WH Freeman. 20.Chuah, G., S. Jaenicke, and T. Xu, The effect of digestion on the surface area and porosity of alumina. Microporous and Mesoporous Materials, 2000. 37(3): p. 345-353. 21.汪建民, 陶瓷技術手冊(下冊). 中華民國粉末冶金協會出版, 1994. 22.PRASAD, R., L.A. KENNEDY, and E. RUCKENSTEIN, Kinetics of catalytic combustion of propane on transition metal oxides. Combustion Science and Technology, 1982. 27(5-6): p. 171-181. 23.Venkatesh, R. and S.R. Ramanan, Influence of processing variables on the microstructure of sol–gel spun alumina fibres. Materials Letters, 2002. 55(3): p. 189-195. 24.Sakuma, Y., et al., Neutron-irradiation effect on the mechanical properties of alumina fiber. Journal of nuclear materials, 1998. 254(2): p. 243-248. 25.Lukin, E., et al., New ceramic materials based on aluminum oxide. Refractories and industrial ceramics, 2001. 42(7-8): p. 261-268. 26.Schehl, M., L. Dıaz, and R. Torrecillas, Alumina nanocomposites from powder–alkoxide mixtures. Acta materialia, 2002. 50(5): p. 1125-1139. 27.Park, Y.K., et al., Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Materials Research Bulletin, 2005. 40(9): p. 1506-1512. 28.蘇英源,郭金國, 冶金學. 2000. 29.楊宸宇, 奈米級 α 相氧化鋁粉末燒結之研究. 成功大學資源工程學系學位論文, 2007: p. 1-81. 30.汪建民, 精密陶瓷科技. 工業技術研究院, 1987. 31.Chiang, Y.-M., D.P. Birnie, and W.D. Kingery, Physical ceramics. 1997: J. Wiley NY. 32.Sanghera, J.S., et al., Effect of Aluminum Fluoride on the Physical Properties and Stability of Fluorozirconate and Fluorozirco‐Hafnate Glasses. Journal of the American Ceramic Society, 1990. 73(9): p. 2677-2683. 33.謝沐辰, 以油酸分散氫氧化鋁膠製造 α 相氧化鋁粉末程序之研究. 成功大學資源工程學系學位論文, 2004: p. 1-58. 34.Wilson, S. and J. Mc Connell, A kinetic study of the system γ-AlOOHAl2O3. Journal of Solid State Chemistry, 1980. 34(3): p. 315-322. 35.Satterfield, C.N., Heterogeneous catalysis in practice. Vol. 416. 1980: McGraw-Hill New York. 36.Hess, W.T., Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons Ltd., New York, 1995. 37.Demina, S., et al., Numerical analysis of sapphire crystal growth by the Kyropoulos technique. Optical Materials, 2007. 30(1): p. 62-65. 38.Chen, C.-H., et al., Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process. Journal of Crystal Growth, 2012. 352(1): p. 9-15. 39.Chiue, Y.-s., Numerical analysis of thermal stress of sapphire crystal cooling by the Kyropoulos method. 2012. 40.高正雄, 電漿化學. 工業調查會電子材料編輯部, 1991. 41.張家豪, 電漿源原理與應用之介紹. 物理雙月刊, 2006. 42.李灝銘、張木彬、陳志維, 電漿技術於廢水處理之應用. 環保技術e報, 2004. 17. 43.張木彬、李灝銘, 電漿處理技術於環境工程之應用與發展趨勢. 44.Sato, M., et al., Aqueous phenol decomposition by pulsed discharges on the water surface. Industry Applications, IEEE Transactions on, 2008. 44(5): p. 1397-1402. 45.Dunn, J.E. and J.S. Pearlman, Methods and apparatus for extending the shelf life of fluid food products. 1987, Google Patents. 46.Zhang, Q., G.V. Barbosa-Cánovas, and B.G. Swanson, Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 1995. 25(2): p. 261-281. 47.Dunne, C., et al., Application of high energy electric field pulses to preservation of foods for combat rations. Science and Technology for Force XXI. Department of the Army. Norfolk, Virginia. June, 1996: p. 24-27. 48.Reina, L.D., et al., Inactivation of Listeria monocytogenes in milk by pulsed electric field. Journal of Food Protection®, 1998. 61(9): p. 1203-1206. 49.Zhang, P., G. Zhang, and W. Wang, Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresource Technology, 2007. 98(1): p. 207-210. 50.Schumacher, B.M., After 60 years of EDM the discharge process remains still disputed. Journal of Materials Processing Technology, 2004. 149(1): p. 376-381. 51.Her, Q.-K., 高鎳合金微細放電加工之特性研究. 2002. 52.任俊,沈健,盧壽慈, 顆粒分散科學與技術. 化學工業出版社, 2005. 53.陳竹南, 放電加工原理與加工技術. 建宏書局, 1976. 54.Tseng, K.-H., et al., Characterization of gold nanoparticles in organic or inorganic medium (ethanol/water) fabricated by spark discharge method. Materials Letters, 2008. 62(19): p. 3341-3344. 55.Tien, D.-C., et al., Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. Journal of alloys and compounds, 2008. 463(1): p. 408-411. 56.Tokushige, M., T. Nishikiori, and Y. Ito, Synthesis of Ni nanoparticles by plasma-induced cathodic discharge electrolysis. Journal of applied electrochemistry, 2009. 39(10): p. 1665-1670. 57.Lin, H.-F., et al., Thermal plasma synthesis and optical properties of Zn2SnO4 nanopowders. Materials Chemistry and Physics, 2009. 117(1): p. 9-13. 58.Sönmezoğlu, S., et al., Fast production of ZnO nanorods by arc discharge in de-ionized water and applications in dye-sensitized solar cells. Journal of Alloys and Compounds, 2014. 586: p. 593-599. 59.Shabgard, M.R. and A.F. Najafabadi, The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process. Advanced Powder Technology, 2014. 25(3): p. 937-945. 60.蔡信行,孫光中, 奈米科技導論. 新文京, 2004. 61.張安華, 實用奈米技術. 新文京, 2005. 62.Bhattacharya, I., et al., Factors controlling precipitation of finer size alumina trihydrate. International journal of mineral processing, 2002. 65(2): p. 109-124. 63.Pradhan, J., et al., Study on the various factors affecting the quality of precipitated non-metallurgical alumina trihydrate particles. Hydrometallurgy, 2001. 60(2): p. 143-153. 64.Paulaime, A.-M., I. Seyssiecq, and S. Veesler, The influence of organic additives on the crystallization and agglomeration of gibbsite. Powder Technology, 2003. 130(1): p. 345-351. 65.Larbot, A., et al., Inorganic membranes obtained by sol-gel techniques. Journal of membrane science, 1988. 39(3): p. 203-212. 66.Tiwari, V., et al., Kinetics of formation of the pyrochlore and perovskite phases in sol-gel derived lead zirconate titanate powder. Journal of materials research, 1998. 13(08): p. 2170-2173. 67.Li, J., et al., Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process. Ceramics International, 2006. 32(5): p. 587-591. 68.蔣孝澈, 溶膠凝膠製作與應用專輯. 化工, 1999. 69.王世敏,許祖勛,傅晶, 奈米材料原理與製備. 五南圖書, 2004. 70.Anderson, M.A., M.J. Gieselmann, and Q. Xu, Titania and alumina ceramic membranes. Journal of Membrane Science, 1988. 39(3): p. 243-258. 71.Byrappa, K. and M. Yoshimura, Handbook of hydrothermal technology. 2001: William Andrew. 72.Iwasaki, F. and H. Iwasaki, Historical review of quartz crystal growth. Journal of crystal growth, 2002. 237: p. 820-827. 73.Yamaguchi, G. and H. Yanagida, Corundum α-Al2O3 Formation from the Dehydration of Boehmite γ-Al00H under Hydrothermal Conditions. I. Factors Determining the Grain Size of Corundum and a Proposal for the Formation Mechanism. 1963, Sep. 74.Kaiser, A., D. Sporn, and H. Bertagnolli, Phase transformations and control of habit in lyothermal synthesis of α-Al2O3. Journal of the European Ceramic Society, 1994. 14(1): p. 77-83. 75.Kannan, T., P. Panda, and V. Jaleel, Preparation of pure boehmite, α--Al 2 O 3 and their mixtures by hydrothermal oxidation of aluminium metal. Journal of Materials Science Letters, 1997. 16(10): p. 830-834. 76.Kutty, T., V. Jayaraman, and G. Periaswami, Preparation of proton–β/β ″-aluminas by the ion-exchange under hydrothermal conditions and their characterisation. Solid state ionics, 2000. 128(1): p. 161-175. 77.尚學軍, 水熱法合成α-Al2O3 粉體的工藝因素研究. 耐火材料, 2008. 42(6). 78.Ding, J., T. Tsuzuki, and P.G. McCormick, Ultrafine alumina particles prepared by mechanochemical/thermal processing. Journal of the American Ceramic Society, 1996. 79(11): p. 2956-2958. 79.Billik, P., et al., Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al2O3 formation. Scripta materialia, 2007. 57(7): p. 619-621. 80.Rajendran, S., Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics. Journal of materials science, 1994. 29(21): p. 5664-5672. 81.Sharma, P.K., et al., Hydrothermal Synthesis of Nanosize alpha‐Al2O3 from Seeded Aluminum Hydroxide. Journal of the American Ceramic Society, 1998. 81(10): p. 2732-2734. 82.Gocmez, H. and O. Özcan, Low temperature synthesis of nanocrystalline α-Al 2O3 by a tartaric acid gel method. Materials Science and Engineering: A, 2008. 475(1): p. 20-22. 83.Tok, A., F. Boey, and X. Zhao, Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. Journal of materials processing technology, 2006. 178(1): p. 270-273. |
Page generated in 0.0038 seconds