Return to search

Spray Cooling For Land, Sea, Air And Space Based Applications, A Fluid Managment System For Multiple Nozzle Spray Cooling And A Guide To High Heat Flux Heater Design

This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10[degrees]C & 15[degrees]C values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1326
Date01 January 2005
CreatorsGlassman, Brian
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0027 seconds