Digital image correlation is a contactless optical method used for displacement and strain measurement which has become increasingly popular in the field of experimental mechanics. A specialized use case for the algorithm is to measure the clamping force in bolted joints, a crucial metric when considering the longevity and reliability of the constructs. However, in order to be able to measure the clamping force in real-time, the digital image correlation has to be carried out rapidly as the tightening of the bolts can happen in milliseconds. One approach to increase the speed of the process is hardware acceleration. This thesis presents and evaluates multiple variations of an Field Programmable Gate Arrays (FPGA)-accelerated digital image correlation framework. The goal of the project is to accelerate the image correlation to sufficient speeds so it can be used for highly dynamic and continuous tightenings, which can take 20 to 200 ms and 200 to 1000 ms or more to finish respectively. A baseline implementation was created based on an innovative digital image correlation framework. Strain calculation was altered for the specialized use of clamping force determination. Afterward, different parts of the framework were selected and optimized for hardware acceleration. The parts include both preprocessing and correlation steps. The targets for acceleration were optimized using techniques such as quantization and pipelining. The accelerators were created using high-level synthesis and the resulting implementations utilize both the processor and FPGA parts of a Zynq-7000 system-on-chip. Results show that all accelerators reduce the total execution time of the framework by varying degrees. Accelerators targeting the preprocessing parts such as Gaussian and B-spline filtering proved to be the most effective in speeding up the process achieving a 1,56 and 1,12 times speedup for the fixed-point and a 1,2 and 1,07 times speedup for the double floating-point versions respectively. A combined version containing multiple accelerators resulted in a 1,9 times average speedup. It can be concluded that the presented approach is not fast enough for all highly dynamic tightening processes, as the fastest execution speed achieved is above 100 ms, but could be used for continuous tightening depending on constructs. / Digital image correlation(DIC) är en kontaktlös optisk metod, använd för mätning av förskjutning och töjning, som blivit en allt mer populär inom experimentell mekanik. Ett användningsområde för algoritmen är att mäta klämkraften i skruvförband, en avgörande faktor för hållbarhet och tillförlitlighet i konstruktioner. Men för att mäta klämkraft i realtid, behöver DIC utföras väldigt snabbt då åtdragningsförloppet kan ske inom loppet av millisekunder. En metod för att öka hastigheten är hårdvaruacceleration. Denna avhandling presenterar och utvärderar ett flertal varianter av ett Field Programmable Gate Arrays (FPGA)-accelererat DIC ramverk. Avhandlingen syftar till att accelerera bildkorrelationen tillräckligt mycket för att kunna användas till dynamiska och kontinuerliga åtdragningar som tar 20 till 200 ms respektive 200 till 1000 ms eller mer. En referens-implementation skapades baserat på ett innovativt DIC ramverk. Beräkning av töjning anpassades för specialfallet: bestämmandet av klämkraft. Efter det valdes olika delar av ramverket ut och optimerades för hårdvaruacceleration. De valda delarna innehåller både preprocessor- och korrelationssteg. Delarna som valdes ut för acceleration optimerades med hjälp av tekniker som kvantisering och pipelining. Acceleratorerna skapades med hjälp av high-level synthesis och de resulterande implementationerna använder både processor och FPGA i en Zynq-7000 system-on-chip. Resultaten visar att alla acceleratorer reducerar ramverkets totala exekveringstid med varierande grad. Acceleratorer som riktar sig mot preprocessing som Gaussian och B-spline filtrering visade sig vara mest effektiva och resulterade i en 1.56 respektive 1.12 gånger snabbare exekveringstid för fixed point, och 1.2 respektive 1.07 gånger snabbare exikveringstid för double floating-point. En kombinerad version som innehöll flera acceleratorer resulterade i en 1.9 gånger snabbare genomsnittlig exekveringstid. Slutsatsen är att den presenterade metoden inte är tillräckligt snabb för alla dynamiska åtdragningsförlopp, då den snabbaste uppnådda exekveringstiden är över 100 ms. Men metoden skulle kunna användas för kontinuerliga åtdragningar beroende på konstruktionen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337063 |
Date | January 2023 |
Creators | Csuvarszki, János Csanád |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:640 |
Page generated in 0.0023 seconds