The research on transition in supersonic and hypersonic boundary layers has been reinvigorated in the last decades because of the increased interest in high-speed flight. The receptivity to environmental disturbances of high-speed boundary layers developing over flat plates or curved surfaces is a very important problem because the transition process is directly impacted by it. The main objective of the research is to determine the effect of small steps on laminar high-speed boundary-layers that are excited by freestream disturbances in the form of vorticity and acoustic waves. Both supesonic and hypersonic regimes are analyzed using a high-order compressible Navier-Stokes numerical algorithm. It is found that both the backward and the forward steps are capable of stabilizing the disturbances that propagate inside the boundary layer. This will potentially delay the formation of three-dimensional disturbances that are precursors to transition into turbulence.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2683 |
Date | 09 December 2016 |
Creators | Yassir, Sofia |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds