Métodos de simulação baseados em dinâmica de fluidos computacional (DFC) têm sido empregado em diversas areas de estudo, tais como aeroacústica, dinâmica dos gases, fluidos viscoelásticos, entre outros. Entretanto, a necessidade de maior acurácia e desempenho destes métodos têm dado origem a soluções representadas por conjuntos de dados cada vez mais complexos. Neste contexto, técnicas voltadas à extração de estruturas relevantes (features), e sua posterior visualização, têm um papel muito importante, tornando mais fácil e intuitiva a análise dos dados gerados por simulações. Os métodos de extração de estruturas detectam e isolam elementos significativos no contexto da análise dos dados. No caso da análise de fluidos, estas estruturas podem ser isosuperfícies de pressão, vórtices, linhas de separação, etc. A visualização, por outro lado, confere atributos visuais a estas estruturas, permitindo uma análise mais intuitiva através de sua inspeção visual. Tradicionalmente, métodos de DFC representam suas soluções como funções lineares definidas sobre elementos do domínio. Entretanto, a evolução desses métodos tem dado origem a soluções representadas analiticamente através de funções de alta ordem. Apesar destes métodos apresentarem características desejáveis do ponto de vista de eficiência e acurácia, os dados gerados não são compatíveis com os métodos de extração de estruturas ou de visualização desenvolvidos originalmente para dados interpolados linearmente. Uma alternativa para este problema consiste na redução da ordem dos dados através de reamostragem e posterior aplicação de métodos tradicionais para extração de estruturas e visualização. Porém, o processo de amostragem pode introduzir erros nos dados ou resultar em excessivo consumo de memória, necessária ao armazenamento das amostras. Desta forma, torna-se necessário o desenvolvimento de métodos de extração e visualização que possam operar diretamente sobre os dados de alta ordem. As principais contribuições deste trabalho consistem em dois métodos que operam diretamente sobre dados de alta ordem. O primeiro consiste em um método para extração e visualização de isosuperfícies. O método baseia-se em uma abordagem híbrida que, ao distribuir o esforço computacional envolvido na extração e visualização das isosuperfícies em operações executadas nos espaços do objeto e da imagem, permite a exploração interativa de isosuperfícies através da troca de isovalores. O segundo método consiste em uma técnica para extração de estruturas lineares, onde a avaliação da forma intervalar do operador parallel vectors, em conjunto com métodos de subdivisão adaptativa, é utilizada como critério de pesquisa destas estruturas. Ambos os métodos foram projetados para tirarem proveito do paralelismo do hardware gráfico. Os resultados obtidos são apresentados tanto para dados sintéticos quanto para dados de simulações gerados através do método de Galerkin discontínuo. / Computational fluid dynamics (CFD) methods have been employed in the studies of subjects such as aeroacoustics, gas dynamics, turbo machinery, viscoelastic fluids, among others. However, the need for accuracy and high performance resulted in methods whose solutions are becoming increasingly more complex. In this context, feature extraction and visualization methods play a key role, making it easier and more intuitive to explore and analyze the simulation data. Feature extraction methods detect and isolate relevant structures in the context of data analysis. In the case of flow analysis, these structures could be pressure isocontours, vortex cores, detachment lines, etc. By assigning visual attributes to these structures, visualization methods allow for a more intuitive analysis through visual inspection. Traditionally, CFD methods represent the solution as piecewise linear basis functions defined over domain elements. However, the evolution of CFD methods has led to solutions represented analytically by higher-order functions. Despite their accuracy and efficiency, data generated by these methods are not compatible with feature extraction and visualization methods targeted to linearly interpolated data. An alternative approach is resampling, which allows the use of existing low order feature extraction and visualization methods. However, resampling is not desirable since it may introduce error due to subsampling and increase memory consumption associated to samples storage. To overcome these limitations, attention has recently been given to methods that handle higher-order data directly. The main contributions of this thesis are two methods developed to operate directly over higher-order data. The first method consists of an isocontouring method. It relies on a hybrid technique that, by splitting the isocontouring workload over image and object space computations, allows for interactive data exploration by dynamically changing isovalues. The second method is a line-type feature extraction method. The search for features is accomplished using adaptive subdivision methods driven by the evaluation of the inclusion form of the parallel vectors operator. Both methods were designed to take advantage of the parallelism of current graphics hardware. The obtained results are presented for synthetic and real simulation higher-order data generated with the discontinuous Galerkin method.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/35710 |
Date | January 2011 |
Creators | Pagot, Christian Azambuja |
Contributors | Comba, Joao Luiz Dihl |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds