Der ATP-getriggerte Ionenkanal P2X7 ist als purinerger Oberflächenrezeptor besonders auf Zellen des Immunsystems und auf Gliazellen im Nervensystem exprimiert. Seine Aktivierung führt zur Freisetzung proinflammatorischer Zytokine, zur Bildung reaktiver Sauerstoffspezies sowie zu einer Beeinflussung des Zellzyklus. Zwar konnte eine Beteiligung des Rezeptors an verschiedenen entzündlichen und degenerativen Erkrankungen nachgewiesen werden, allerdings bestehen nach wie vor viele Unstimmigkeiten darüber, ob P2X7 im Einzelfall protektiv oder schadend wirkt. Eine therapeutische Modulation des Rezeptors gestaltet sich daher bis heute schwierig. Weiterhin wurde trotz intensiver Bemühungen um selektive, potente P2X7-Modulatoren bisher kein Wirkstoff über Phase-II-Studien hinaus entwickelt.
Der erste Teil der Arbeit beschreibt eine Studie zur Identifikation neuer P2X7-Modulatoren und deren Charakterisierung hinsichtlich Potenz, Bindeverhalten und Speziesspezifität. Ziel dieser Studie war es, die Basis für die Entwicklung möglicher neuer Therapeutika zu legen, für die ein hoher Bedarf besteht.
Im zweiten Teil der Arbeit wurde die Beteiligung des P2X7-Rezeptors an den pathophysiologischen Vorgängen nach einem Hirninfarkt untersucht. Besondere Aufmerksamkeit lag dabei auf dem Einfluss, den der Rezeptor auf die Bildung eines begleitenden, oftmals fatalen Hirnödems ausübt.
In einer Wirkstoffbibliothek enthaltene zugelassene Pharmaka und Naturstoffe wurden auf ihre Wirksamkeit am rekombinant exprimierten humanen P2X7-Rezeptor (hP2X7) getestet. Dazu wurde gemessen, inwiefern diese Wirkstoffe den P2X7-vermittelten Ca2+-Einstrom modulieren können. Für potenziell selektive
Substanzen wurden Konzentrations-Wirkungs-Kurven erstellt. Für den potenten Inhibitor Tanshinon II A-Sulfonat (TIIAS) und den chemisch verwandten Wirkstoff Tanshinon II A (TIIA) erfolgte diese Untersuchung auch an den rekombinant exprimierten P2X7-Rezeptoren von Maus (mP2X7) und Ratte (rP2X7). Weiterhin
erfolgte eine detaillierte, auf elektrophysiologischen Untersuchungen basierende Darstellung der pharmakodynamischen Eigenschaften von TIIAS. Die Selektivität der Wirkung gegenüber P2X2 und P2X4 wurde mithilfe entsprechender Zelllinien geprüft. Die Wirkung modulierender Pharmaka am nativen Rezeptor wurde in humanen, aus peripheren Blutmonozyten gereiften Makrophagen überprüft, wozu neben der Darstellung des Ca2+-Einstroms auch ein IL-1β-ELISA eingesetzt wurde. In allen Experimenten wurde die Beteiligung von P2X7 über bekannte Antagonisten verifiziert. Um zu klären, inwiefern P2X7 die pathophysiologischen Abläufe nach Hirninfarkt beeinflusst, wurde bei 20 P2X7-defizienten Mäusen (P2X7-/-) und bei 22 zugehörigen Wildtyp-Mäusen (WT) eine zerebrale Ischämie
induziert, indem die mittlere Zerebralarterie mit einem dünnen Faden für 60 Minuten transient verschlossen wurde (middle cerebral artery occlusion, MCAO). In den folgenden 72 Stunden wurde über klinische Methoden und Magnetresonanzuntersuchungen die Entwicklung neurologischer Defizite, der Infarktgröße und des begleitenden Hirnödems evaluiert. Nach schmerzloser Tötung und Hirnentnahme wurden immunhistologisch die Aktivierung und Verteilung von Mikroglia und Astrozyten sowie der Zustand des Gefäßendothels untersucht. Sham-operierte Tiere dienten in allen Experimenten als Kontrollen.
TIIAS hemmte hP2X7 mit einer IC50 von 4.3 μM, während die Potenz an mP2X7 geringer war und rP2X7 kaum geblockt wurde. TIIA modulierte P2X7 nicht. TIIAS hemmte als allosterischer Antagonist die Öffnung des Ionenkanals und band vermutlich an eine intrazelluläre Bindestelle. Die Wirkung von TIIAS wurde in humanen Makrophagen bestätigt, in denen der Wirkstoff den Ioneneinstrom und die IL-1β-Freisetzung hemmte.
Obwohl die neurologische Untersuchung von P2X7-/-- und WT-Mäusen nach MCAO keine signifikanten Unterschiede ergab, zeigte sich in der bildgebenden Diagnostik, dass P2X7-/--Mäuse binnen 24 Stunden nach der OP ein signifikant stärkeres Hirnödem entwickelten, welches nicht durch Unterschiede in der
Infarktgröße bedingt war. Der Infarkt führte in beiden Gruppen zu einer Gliaaktivierung, die im Fall der Mikroglia in Abwesenheit von P2X7 allerdings reduziert war. Differenzen hinsichtlich der Aktivierung von Astrozyten und der Expression von Laminin im Kapillarendothel wurden nicht festgestellt.
Im Gegensatz zu TIIA, das häufig als gleichwertiger Wirkstoff eingesetzt wird, blockt TIIAS hP2X7 speziesspezifisch mit einer hohen Potenz. Maus und Ratte scheiden aufgrund der geringen Wirkung von TIIAS leider als Tiermodelle aus, um die Wirkung von TIIAS in vivo zu prüfen. Weitere Arbeiten sind notwendig, um
die Potenz von TIIAS in anderen Spezies zu evaluieren oder Alternativen zum Tierversuch zu finden und eine mögliche therapeutische Anwendung bei Erkrankungen mit P2X7-Beteiligung zu testen.
P2X7 beeinflusst die pathophysiologischen Vorgänge nach einem Hirninfarkt und begrenzt die Entwicklung eines zytotoxischen Hirnödems, nicht aber die des vasogenen Hirnödems, das sich zeitversetzt einstellt. Eine mögliche Erklärung für diesen Sachverhalt bieten die unterschiedlichen Funktionen, die Gliazellen zu
verschiedenen Zeitpunkten nach zerebraler Ischämie übernehmen. Unsere Ergebnisse deuten auch darauf hin, dass verschiedene Tiermodelle des zerebralen Infarkts nicht in allen Punkten vergleichbar sind.:Inhaltsverzeichnis
1 Einleitung........................................................................................................... 1
1.1 Purinerge Signaltransduktion.......................................................................... 1
1.2 P2X-Rezeptoren.............................................................................................. 2
1.3 Pharmakologie des P2X7-Rezeptors............................................................... 3
1.4 Physiologische und pathophysiologische Bedeutung des P2X7-Rezeptor...... 5
1.5 Gegenstand dieser Arbeit............................................................................... 7
2 Veröffentlichungen............................................................................................. 9
2.1 Erste Publikation............................................................................................. 9
2.1.1 Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7................................. 9
2.1.2 Ergänzende Materialien zur ersten Publikation.......................................... 22
2.2 Zweite Publikation......................................................................................... 30
2.2.1 Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery................................................................................. 30
2.2.2 Ergänzende Materialien zur zweiten Publikation......................................... 42
2.2.3 Erratum to: Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion............................................ 46
3 Diskussion........................................................................................................ 49
4 Zusammenfassung........................................................................................... 55
5 Summary.......................................................................................................... 57
6 Literaturverzeichnis.......................................................................................... 59
7 Danksagung..................................................................................................... 66 / ATP-gated ion channel P2X7 is a purinergic cell surface receptor which is mainly expressed on immune and glia cell. Upon activation of P2X7, proinflammatory cytokines are released, reactive oxygen species are generated and the cell cycle may be altered. In this regard, it has been shown that P2X7 plays a role in diseases such as rheumatoid arthritis, Alzheimer’s disease and multiple sclerosis. However, results regarding protective or detrimental effects mediated by P2X7 under particular conditions are often inconsistent. Thus, up to now, any therapeutic modulation of the receptor remains a challenge. Although intensive research has been conducted to find selective, potent P2X7-modulators, no active compound has been developed beyond phase II clinical trials.
The first part of this work describes a study realized to identify new P2X7 modulators and to characterize them in terms of pharmacodynamic properties like potency and species specificity. This study was aimed at providing a basis for the development of new therapeutic agents, which are urgently needed.
During the second part of this work, the involvement of P2X7 in pathophysiological processes after cerebral infarction was examined. Particular attention was paid to the influence of the receptor on the development of an accompanying and often fatal brain edema.
A compound library containing approved drugs and natural compounds was screened for modulators of the recombinantly expressed human P2X7 receptor (hP2X7). Therefor, their effect on P2X7-mediated Ca2+ influx was evaluated. Concentration-response-curves were established for potentially selective compounds. Tanshinone II A sulfonate (TIIAS) turned out to be a potent inhibitor of P2X7. Both TIIAS and tanshinone II A (TIIA), the natural compound TIIAS has been derived from, were also tested on recombinantly expressed mouse and rat P2X7 (mP2X7 and rP2X7, respectively). Furthermore, electrophysiological assays were conducted for a detailed characterization of mechanisms of P2X7 inhibition. Antagonist selectivity was revised using cell lines expressing purinergic receptors P2X2 and P2X4. Human monocyte-derived macrophages were used in fluorometric calcium and dye-uptake assays as well as an IL-1ß ELISA to evaluate
the effects of modulating compounds on native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists.
In order to evaluate whether modulation of P2X7 may affect the outcome after cerebral infarction, cerebral ischemia was induced in 20 P2X7-deficient mice (P2X7-/-) and 22 mice of their corresponding wild type (WT) by transiently occluding their middle cerebral artery for 60 minutes with a thin filament (middle cerebral artery occlusion, MCAO). During 72 hours following surgery, neurological deficits, infarct size and edema development were monitored, applying clinical examinations and magnetic resonance measurements. After humane killing and brain removal, different antibodies were used in order to evaluate the distribution and activation state of microglia and astrocytes as well as the condition of the vascular endothelium. Sham-operated animals were used as negative controls in all experiments.
TIIAS blocked hP2X7 with an IC50 of 4.3 μM, whereas it proved to be less potent at mP2X7 and poorly modulated rP2X7. TIIA did not modulate P2X7. TIIAS acted as an allosteric antagonist and reduced the opening of the ion channel; it presumably bound to an intracellular binding site. The effect of TIIAS could be
confirmed in human macrophages. In these cells, TIIAS inhibited the ATP-induced Ca2+ entry, dye-uptake and release of IL-1β.
Although neurological examinations did not reveal significant differences between P2X7-/- and WT mice that underwent MCAO, diagnostic imaging revealed that P2X7-/- mice developed significantly more severe brain edema within 24 hours after surgery, a development that was not due to differences in infarct sizes. Both
groups displayed clear signs of activation of glia cells, but only microglia activation was attenuated in the absence of P2X7. Differences regarding the activation state of astrocytes or the expression of laminin by capillary endothelial cells could not be detected.
TIIAS species specifically blocks hP2X7 with a high potency. TIIA does not convey this effect although both compounds are frequently used interchangeably. Due to the low potency TIIAS displays at mP2X7 and rP2X7, these species unfortunately cannot be used as animal models to evaluate the drug’s effect in vivo. Further
research is necessary to evaluate the potency of TIIAS at other species’ P2X7 receptors or to find alternativespurinerge Signaltransduktion, P2X7, Tanshinon II A-Sulfonat, zerebrale Ischämie,
Hirnödem to animal testing in order to study possible therapeutic applications of TIIAS in P2X7-related diseases.
P2X7 does affect pathophysiological events following cerebral ischemia and restricts cytotoxic brain edema development, but does not limit vasogenic cerebral edema formation, which develops at a later stage of the disease. The different functions fulfilled by glia cells at distinct points in time after infarction may provide an explanation for this interesting fact. The results presented also imply that diverse animal models of cerebral ischemia may not be entirely comparable due to differences regarding the pathogenesis of brain edema.:Inhaltsverzeichnis
1 Einleitung........................................................................................................... 1
1.1 Purinerge Signaltransduktion.......................................................................... 1
1.2 P2X-Rezeptoren.............................................................................................. 2
1.3 Pharmakologie des P2X7-Rezeptors............................................................... 3
1.4 Physiologische und pathophysiologische Bedeutung des P2X7-Rezeptor...... 5
1.5 Gegenstand dieser Arbeit............................................................................... 7
2 Veröffentlichungen............................................................................................. 9
2.1 Erste Publikation............................................................................................. 9
2.1.1 Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7................................. 9
2.1.2 Ergänzende Materialien zur ersten Publikation.......................................... 22
2.2 Zweite Publikation......................................................................................... 30
2.2.1 Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery................................................................................. 30
2.2.2 Ergänzende Materialien zur zweiten Publikation......................................... 42
2.2.3 Erratum to: Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion............................................ 46
3 Diskussion........................................................................................................ 49
4 Zusammenfassung........................................................................................... 55
5 Summary.......................................................................................................... 57
6 Literaturverzeichnis.......................................................................................... 59
7 Danksagung..................................................................................................... 66
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:16851 |
Date | 28 November 2017 |
Creators | Kaiser, Melanie |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0047 seconds