Return to search

Theoretical approach to Direct Resonant Inelastic X-Ray Scattering on Magnets and Superconductors

The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic x-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors.

In particular, we will show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems.

Moreover, we will show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s, d (singlet pairing) and p wave (triplet pairing).

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29012
Date26 October 2015
CreatorsMarra, Pasquale
Contributorsvan den Brink, Jeroen, Büchner, Berndt, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds