Return to search

Non-commutative homometric musical structures and chord distances in geometric pitch spaces / Etude de deux concepts mathématico-musicaux : l'homométrie non-commutative et les distances d'accords

Nous étudions deux thématiques principales : l'homométrie non-commutative dans des produits semi-directs, et une notion de distance entre accords musicaux. deux melodies sont dites homométriques si elles possèdent le même ensemble d'intervalles : nous transposons cette notion a un enchainement d'accords et plus généralement a des produits semi-directs, ce qui permet d'élaborer un cadre pour l'étude de l'homométrie dans des groupes non-commutatifs, tels que le groupe diédral. nous définissons dans une deuxième partie une mesure de distances entre des accord musicaux n'ayant pas le même nombre de notes, a partir d'une distance basée sur le concept de voice-leading. / We study two main topics: non-commutative homometry and the notion of distance between musical chords. Two melodies are homometric if they share the same set of intervals. We transpose this notion to a chord sequence and more generally to semi-direct products, which allows to build a framework for the general study of homometry in non-commutative groups, such as the dihedral group. In the second part we define a mesure of distance between musical chords of different cardinalities, from a distance based on the notion of voice-leading.

Identiferoai:union.ndltd.org:theses.fr/2017PA066576
Date20 September 2017
CreatorsGenuys, Grégoire
ContributorsParis 6, Allouche, Jean-Paul, Andreatta, Moreno
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds