Return to search

Surfaces et invariants de type fini en dimension 3

Cette thèse porte sur les invariants des sphères d'homologie entière de dimension 3, et en particulier sur les invariants de type fini pour la filtration de Goussarov-Habiro.<br />Dans une première partie, on étudie la variation d'un invariant de degré 2n après chirurgie le long d'une surface par un élément du 2n-ième terme de la série centrale descendante du groupe de Torelli. Dans le cas d'un commutateur de 2n éléments du groupe de Torelli, on exprime cette variation en fonction de l'homomorphisme de Johnson évalué sur ces 2n éléments et du système de poids de l'invariant.<br /><br />Le calcul des claspers de Goussarov-Habiro donne des équivalences topologiques entre des chirurgies sur des corps en anses plongés dans les variétés. Ce calcul a déjà permis de préciser le comportement des invariants de type fini lors de nombreuses modifications topologiques. La deuxième partie de cette thèse est consacrée à un raffinement de ce calcul. Ce raffinement est ensuite appliqué à l'obtention d'une formule de chirurgie géométrique sur les noeuds pour les invariants de degré 4, c'est-à-dire que l'on exprime la variation d'un tel invariant après chirurgie sur un noeud en fonction d'invariants de courbes tracées au voisinage d'une surface de Seifert de ce noeud.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00113863
Date26 October 2006
CreatorsAuclair, Emmanuel
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds