Return to search

Communication-aware planning aid for single-operator multi-UAV teams in urban environments

With the achievement of autonomous flight for small unmanned aircraft, currently
ongoing research is expanding the capabilities of systems utilizing such
vehicles for various tasks. This allows shifting the research focus from the
individual systems to task execution benefits resulting from interaction and
collaboration of several aircraft.

Given that some available high-fidelity simulations do not yet support
multi-vehicle scenarios, the presented work introduces a framework which allows
several individual single-vehicle simulations to be combined into a larger
multi-vehicle scenario with little to no special requirements towards the
single-vehicle systems. The created multi-vehicle system offers real-time
software-in-the-loop simulations of swarms of vehicles across multiple hosts and
enables a single operator to command and control a swarm of unmanned aircraft
beyond line-of-sight in geometrically correct two-dimensional cluttered
environments through a multi-hop network of data-relaying intermediaries.

This dissertation presents the main aspects of the developed system: the
underlying software framework and application programming interface, the
utilized inter- and intra-system communication architecture, the graphical user
interface, and implemented algorithms and operator aid heuristics to support the
management and placement of the vehicles. The effectiveness of the aid
heuristics is validated through a human subject study which showed that the
provided operator support systems significantly improve the operators'
performance in a simulated first responder scenario.

The presented software is released under the Apache License 2.0 and, where
non-open-source parts are used, software packages with free academic licenses
have been chosen--resulting in a framework that is completely free for academic
research.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53881
Date21 September 2015
CreatorsChristmann, Hans Claus
ContributorsJohnson, Eric N., Theodorou, Evangelos
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0017 seconds