Return to search

A Study of Human-Machine Interface (HMI) Learnability for Unmanned Aircraft Systems Command and Control

The operation of sophisticated unmanned aircraft systems (UAS) involves complex interactions between human and machine. Unlike other areas of aviation where technological advancement has flourished to accommodate the modernization of the National Airspace System (NAS), the scientific paradigm of UAS and UAS user interface design has received little research attention and minimal effort has been made to aggregate accurate data to assess the effectiveness of current UAS human-machine interface (HMI) representations for command and control. UAS HMI usability is a primary human factors concern as the Federal Aviation Administration (FAA) moves forward with the full-scale integration of UAS in the NAS by 2025. This study examined system learnability of an industry standard UAS HMI as minimal usability data exists to support the state-of-the art for new and innovative command and control user interface designs. This study collected data as it pertained to the three classes of objective usability measures as prescribed by the ISO 9241-11. The three classes included: (1) effectiveness, (2) efficiency, and (3) satisfaction. Data collected for the dependent variables incorporated methods of video and audio recordings, a time stamped simulator data log, and the SUS survey instrument on forty-five participants with none to varying levels of conventional flight experience (i.e., private pilot and commercial pilot). The results of the study suggested that those individuals with a high level of conventional flight experience (i.e., commercial pilot certificate) performed most effectively when compared to participants with low pilot or no pilot experience. The one-way analysis of variance (ANOVA) computations for completion rates revealed statistical significance for trial three between subjects [F (2, 42) = 3.98, p = 0.02]. Post hoc t-test using a Bonferroni correction revealed statistical significance in completion rates [t (28) = -2.92, p<0.01] between the low pilot experience group (M = 40%, SD =. 50) and high experience group (M = 86%, SD = .39). An evaluation of error rates in parallel with the completion rates for trial three also indicated that the high pilot experience group committed less errors (M = 2.44, SD = 3.9) during their third iteration when compared to the low pilot experience group (M = 9.53, SD = 12.63) for the same trial iteration. Overall, the high pilot experience group (M = 86%, SD = .39) performed better than both the no pilot experience group (M = 66%, SD = .48) and low pilot experience group (M = 40%, SD =.50) with regard to task success and the number of errors committed. Data collected using the SUS measured an overall composite SUS score (M = 67.3, SD = 21.0) for the representative HMI. The subscale scores for usability and learnability were 69.0 and 60.8, respectively. This study addressed a critical need for future research in the domain of UAS user interface designs and operator requirements as the industry is experiencing revolutionary growth at a very rapid rate. The deficiency in legislation to guide the scientific paradigm of UAS has generated significant discord within the industry leaving many facets associated with the teleportation of these systems in dire need of research attention. Recommendations for future work included a need to: (1) establish comprehensive guidelines and standards for airworthiness certification for the design and development of UAS and UAS HMI for command and control, (2) establish comprehensive guidelines to classify the complexity associated with UAS systems design, (3) investigate mechanisms to develop comprehensive guidelines and regulations to guide UAS operator training, (4) develop methods to optimize UAS interface design through automation integration and adaptive display technologies, and (5) adopt methods and metrics to evaluate human-machine interface related to UAS applications for system usability and system learnability.

Identiferoai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-2022
Date01 January 2017
CreatorsHaritos, Tom
PublisherNSUWorks
Source SetsNova Southeastern University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCEC Theses and Dissertations

Page generated in 0.0022 seconds