Spectral computed tomography (CT) has proven an important development in biomedical imaging, yet there are several limitations to this nascent technology. Near-term implementation of spectral CT imaging can be enhanced using a hybrid architecture that integrates a narrow-beam spectral 'interior' imaging chain integrated with a traditional wide-beam 'global' imaging chain. The first study demonstrates the feasibility of hybrid spectral micro-CT architecture with a first-of-its-kind system implementation and preliminary results showing improved contrast resolution and spatial resolution. The second study seeks to characterize the hybrid spectral micro-CT scan protocol for reduction of radiation exposure. In the third study, the spectral 'interior' imaging chain was optimized for K-edge imaging of high-z elemental contrast agents. In the final study, an open-source, low-cost solution for managing digital content in an academic setting was demonstrated. The results of these studies confirm the merits of a hybrid architecture and warrant further consideration in future pre-clinical and clinical spectral micro-CT and CT scanner design and protocols. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/25525 |
Date | 21 February 2014 |
Creators | Bennett, James |
Contributors | Biomedical Engineering, Cao, Guohua, Wang, Ge, Rylander, Christopher G., Butler, Anthony, Yu, Hengyong |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds