Return to search

Experiments with and modelling of explosively driven mangetic flux compression generators

This thesis presents work performed on explosively driven magnetic flux compression generators. This kind of devices converts the chemically stored energy in a high explosive into electromagnetic energy in the form of a powerful current pulse. The high energy density of the high explosives makes flux compression generators attractive as compact power sources. In order to study these devices a generator was designed at FOI in the mid-90ies. Two generators remained unused and became available for this licentiate work. The thesis reports experiments with, and simulations of, the operation of the two remaining generators. The aim was to fully understand the performance of the generator design and be able to accurately simulate its behaviour. The generators were improved and fitted with various types of diagnostics to monitor the generator operation. Two experiments were performed of which the first generator was operated well below its current capability limits while the second was stressed far above its limits. Since the generator generates a rapidly increasing current, a current measurement is the most important diagnostic revealing the current amplification of the generator and its overall performance. Further it is important to measure the timing of various events in the generator. With a common time reference it is possible to combine data from different probes and extract interesting information which cannot be directly obtained with a single measurement. Two types of numerical simulations have been performed: Hydrodynamic simulations of the high explosive interaction with the armature were used to verify the measured armature dynamics. A zero-dimensional code was used to perform circuit simulations of the generator. The model takes into account the inductance reduction due to the compression of the generator as well as the change in conductivity due to heating of the conductors in the generators. / QC 20101103

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-9638
Date January 2008
CreatorsAppelgren, Patrik
PublisherKTH, Rymd- och plasmafysik, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2008:53

Page generated in 0.0017 seconds