Currently, around 28 million people globally suffer from the consequences of corneal blindness and most of them are part of a long waiting list; availability of donor tissue is highly limited. Furthermore, even those who are treated are in risk of developing post- surgery complications, mainly due to microbial infections. Hence, cell-free biomaterials with enhanced properties to prevent corneal associated infections would provide a safe alternative. We evaluated the efficacy of different peptides for the functionalization of collagen-based hydrogels through the in situ synthesis of silver nanoparticles (AgNPs). The produced biomaterials were characterized and evaluated in vitro for biocompatibility and potential antimicrobial activity. From the diverse strategies evaluated, the localized formation of AgNPs onto the periphery of cornea-shaped collagen hydrogels may represent a more promising option.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42910 |
Date | 12 November 2021 |
Creators | Guzmán Soto, Irene |
Contributors | Alarcon, Emilio |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0024 seconds