Return to search

Stimulus-responsive delivery systems for enabling the oral delivery of protein therapeutics exhibiting high isoelectric point

Protein therapeutics offer numerous advantages over small molecule drugs and are rapidly becoming one of the most prominent classes of therapeutics. Unfortunately, they are delivered almost exclusively by injection due to biological obstacles preventing high bioavailability via the oral route. In this work, numerous approaches to overcoming these barriers are explored. PH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) (P(IA-co-NVP)) hydrogels were synthesized, and the effects of monomer ratios, crosslinking density, microparticle size, protein size, and loading conditions were systematically evaluated using in vitro tests. P(IA-co-NVP) hydrogels demonstrated up to 69% greater equilibrium swelling at neutral conditions than previously-studied poly(methacrylic acid-co-N-vinylpyrrolidone) hydrogels and a 10-fold improvement in time-sensitive swelling experiments. Furthermore, P(IA-co-NVP) hydrogel microparticles demonstrated up to a 2.7-fold improvement in delivery of salmon calcitonin (sCT) compared to methacrylic acid-based systems, with a formulation comprised of a 1:2 ratio of itaconic acid to N-vinylpyrrolidone demonstrating the greatest delivery capability. Vast improvement in delivery capability was achieved using reduced ionic strength conditions during drug loading. Use of a 1.50 mM PBS buffer during loading yielded an 83-fold improvement in delivery of sCT compared to a standard 150 mM buffer. With this improvement, a daily dose of sCT could be provided using P(IA-co-NVP) microparticles in one standard-sized gel capsule. P(IA-co-NVP) was also tested with larger proteins urokinase and Rituxan. Crosslinking density provided a facile method for tuning hydrogels to accommodate a wide range of protein sizes. The effects of protein PEGylation were also explored. PEGylated sCT displayed lower release from P(IA-co-NVP) microparticles, but displayed increased apparent permeability across a Caco-2 monolayer by two orders of magnitude. Therefore, PEG-containing systems could yield high bioavailability of orally delivered proteins. Finally, a modified SELEX protocol for cellular selection of transcellular transport-initiating aptamers was developed and used to identify aptamer sequences showing enhanced intestinal perfusion. Over three selection cycles, the selected aptamer library showed significant increases in absorption, and from an initial library of 1.1 trillion sequences, 5-10 sequences were selected that demonstrated up to 10-fold amplification compared to the naïve library. These sequences could provide a means of overcoming the significant final barrier of intestinal absorption. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/30484
Date01 September 2015
CreatorsKoetting, Michael Clinton
ContributorsPeppas, Nicholas A., 1948-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0027 seconds