Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen concentrations in an automated ageing equipment and a high-pressure autoclave. The oxidation of biodiesel at 80 °C was promoted by an increase in the oxygen partial pressure, resulting in the formation of larger amounts of hydroperoxides and acids in the fuel. The fatty acid methyl esters of the biodiesel oxidized less at 150 °C on autoclave aging, because the termination reactions between alkyl and alkylperoxyl radicals dominated over the initiation reactions. HVO consists of saturated hydrocarbons, and remained intact during the exposure. The NBR absorbed a large amount of biodiesel due to fuel-driven internal cavitation in the rubber, and the uptake increased with increasing oxygen partial pressure due to the increase in concentration of oxidation products of the biodiesel. The absence of a tan δ peak (dynamical mechanical measurements) of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was caused by the detachment of bound rubber from particle surfaces. A significant decrease in the strain-at-break and in the Payne-effect amplitude of NBR exposed to biodiesel was explained as being due to the damage caused by biodiesel to the rubber-carbon-black network. During the high-temperature autoclave ageing, the NBR swelled less in biodiesel, and showed a small decrease in the strain-at-break due to the cleavage of rubber chains. The degradation of NBR in the absence of carbon black was due only to biodiesel-promoted oxidative crosslinking. The zinc cations released by the dissolution of zinc oxide particles in biodiesel promoted reduction reactions in the acrylonitrile part of the NBR. Heat-treated star-shaped ZnO particles dissolved more slowly in biodiesel than the commercial ZnO nanoparticles due to the elimination of inter-particle porosity by heat treatment. The fuel sorption was hindered in HVO-exposed NBR by the steric constraints of the bulky HVO molecules. The extensibility of NBR decreased only slightly after exposure to HVO, due to the migration of plasticizer from the rubber. The bisphenol-cured FKM co- and terpolymer swelled more than the peroxide-cured GFLT-type FKM in biodiesel due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. The FKM rubbers absorbed biodiesel faster, and to a greater extent, with increasing oxygen concentration. It is suggested that the extensive biodiesel uptake and the decrease in the strain-at-break and Young’s modulus of the FKM terpolymer was due to dehydrofluorination of the rubber by the coordination complexes of biodiesel and magnesium oxide and calcium hydroxide particles. An increase in the CH2-concentration of the extracted FKM rubbers suggested that biodiesel was grafted onto the FKM at the unsaturated sites resulting from dehydrofluorination. / <p>QC 20170227</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-202422 |
Date | January 2017 |
Creators | Akhlaghi, Shahin |
Publisher | KTH, Fiber- och polymerteknologi, Stockholm, Sweden |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CHE-Report, 1654-1081 ; 2017:9 |
Page generated in 0.0018 seconds