Return to search

The Maximum Principle for Cauchy-Riemann Functions and Hypocomplexity

This licentiate thesis contains results on the maximum principle forCauchy–Riemann functions (CR functions) on weakly 1-concave CRmanifolds and hypocomplexity of locally integrable structures. Themaximum principle does not hold true in general for smooth CR functions,and basic counterexamples can be constructed in the presenceof strictly pseudoconvex points. We prove a maximum principle forcontinuous CR functions on smooth weakly 1-concave CR submanifolds.Because weak 1-concavity is also necessary for the maximumprinciple, a consequence is that a smooth generic CR submanifold ofCn obeys the maximum principle for continuous CR functions if andonly if it is weakly 1-concave. The proof is then generalized to embeddedweakly p-concave CR submanifolds of p-complete complexmanifolds. The second part concerns hypocomplexity and hypoanalyticstructures. We give a generalization of a known result regardingautomatic smoothness of solutions to the homogeneous problemfor the tangential CR vector fields given local holomorphic extension.This generalization ensures that a given locally integrable structureis hypocomplex at the origin if and only if it does not allow solutionsnear the origin which cannot be represented by a smooth function nearthe origin. / Uppsatsen innehåller resultat om maximumprincipen för kontinuerligaCauchy–Riemann funktioner (CR-funktioner) på svagt 1-konkava CRmångfalder,samt hypokomplexitet för lokalt integrerbara strukturer.Maximumprincipen gäller inte generellt för släta CR funktioner ochmotexempel kan konstrueras givet strängt pseudokonvexa punkter.Vi bevisar en maximumprincip för kontinuerliga CR-funktioner påsläta inbäddade svagt 1-konkava CR-mångfalder. Eftersom svagt 1-konkavitet också är nödvändigt får vi som konsekvens att för slätageneriska inbäddade CR-mångfalder i Cn gäller att maximum-principenför kontinuerliga CR-funktioner håller om och endast om CR-mångfaldenär svagt 1-konkav. Vi generaliserar satsen till svagt p-konkava CRmångfalderi p-kompletta mångfalder. Den andra delen behandlarhypokomplexitet och hypoanalytiska strukturer. Vi generaliserar enkänd sats om automatisk släthet för lösningar till de tangentiella CRekvationerna,givet existensen av lokal holomorf utvidgning. Generaliseringenger att en lokalt integrerbar struktur är hypokomplex iorigo om och endast om den inte tillåter lösningar nära origo som inteär släta nära origo. / <p>Forskning finansierad av Forskarskolan i Matematik och Beräkningsvetenskap (FMB), baserad i Uppsala.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-17701
Date January 2012
CreatorsDaghighi, Abtin
PublisherMittuniversitetet, Institutionen för tillämpad naturvetenskap och design, Sundsvall : Mittuniversitetet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMid Sweden University licentiate thesis, 1652-8948 ; 94

Page generated in 0.0046 seconds