Many fish face low oxygen concentrations (hypoxia) in their natural environments, and they respond to hypoxia through a variety of behavioral, physiological, and cellular mechanisms. Some of these responses involve changes in gene expression. In mammals, the hypoxia inducible factor (HIF) family of transcription factors are the “master regulators” of gene expression during hypoxia, but the study of HIF in fish has been hampered by the lack of reagents to detect this protein in non-mammalian vertebrates. The goals of this thesis are to affinity purify antibodies against HIF from the killifish Fundulus heteroclitus and use them to recover and quantify HIF from killifish cells and tissues. The purified, validated antibodies represent a critical reagent for future studies of the role of HIF in the molecular response of this and other fish to fluctuations in oxygen in their natural environments.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3268 |
Date | 13 May 2016 |
Creators | Gonzalez-Rosario, Janet |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0026 seconds