Return to search

Measuring routines of ice accretion for Wind Turbine applications : The correlation of production losses and detection of ice

Wind power will play a major role in the future energy system in Sweden. Most of the major wind parks are planned to be built in sites where the cold climate and atmospheric icing can cause serious problems. This underlines the importance of addressing these issues. The major cause of these problems is in-cloud icing of the rotor blades due to super cooled liquid droplets of clouds. The droplets freeze upon impact with the rotor blade and form hard rime ice. This rime ice causes disruption in the aerodynamics that leads to production losses, extra loads on the rotor blades and when the ice is shed it poses a safety risk to people in the near environment. This master thesis focuses on how to measure the accretion of ice and the correlation between measured ice and production losses of two wind parks in northern Sweden.   The results show a good correlation between the ice accretion on a stationary sensor and the production loss from a wind turbine. In most icing events the icing of the sensor and large production losses from the wind turbine correlated clearly. Attempts to quantify the production losses at a certain ice rate measured with the stationary sensors was done, however no clear results was produced. The reason for this is that the wind turbines often stop completely during an icing event and that the time series analyzed was too short to be able to quantify the losses at certain wind speed and ice rates.   Recommendations on the type of sensor which should be used was to be produced, however the conclusion was that no single sensor has acted satisfactory and could be recommended to measure ice accretion for wind turbine applications. Due to this, at least two sensors are recommended to increase the redundancy in the measurement system. Modeling ice accretion with standard parameters measured has been done and the results show that the time of icing could be determined quite well when the sensors was ice free, however when the sensors and especially the humidity sensors was iced the time of icing was overestimated.   The main conclusion drawn is that there is a clear relationship between the icing of a stationary sensor and the rotor blade. There is still no which fulfills all demands of measuring ice accretion for wind turbine applications, further it is possible with simple models to roughly determine when icing occurs with standard measurements.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-37896
Date January 2010
CreatorsCarlsson, Viktor
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds