The dissetation deals with the inverse problem of identification
of local volatilities from given option price data. The used
separation between purely time- and purely price-dependent
volatilities enables a detailed mathematical analysis of the
corresponding inverse problems. Those are formulated in proper
Banach spaces (Hilbert spaces) as operator equations. The
unique solvability of these equations are examined. Because
the solutions doesn't depend continuously form the given data,
possibilities of regularization are discussed. In particular
the nonlinear Tikhonov regularization and its applicability
to the corresponding problems plays the leading part in these
investigations. Detailed numerical studies illustrate these
considerations and top this disseration off. / Die Dissertation beschäftigt sich mit dem inversen Problem
der Identifikation lokaler Volatilitäten aus gegebenen
Optionspreisen. Die dabei benutzte Trennung zwischen rein zeit-
und rein preisabhängigen Volatilitäten erlaubt eine tiefgehende
mathematische Analyse der entsprechend formulierten inversen
Probleme. Diese werden in geeigneten Banachräumen (Hilberträumen)
als Operatorgleichung angegeben und auf die eindeutige
Lösbarkeit hin untersucht. Da sich die Lösungen als instabil
gegenüber Störungen in den Daten erweisen, werden Möglichkeiten
der Regularisierung diskutiert. Insbesondere steht dabei die
Untersuchung der Anwendbarkeit der Theorie der nichtlinearen
Tikhonov-Regularisierung auf die entsprechenden Probleme im
Vordergrund. Ausführliche numerische Studien illustrieren die
diese Überlegungen und runden die Arbeit ab.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200301607 |
Date | 22 December 2003 |
Creators | Hein, Torsten |
Contributors | TU Chemnitz, Fakultät für Mathematik, Prof. Dr. rer. nat. Bernd Hofmann, PD Dr. rer. nat. Robert Plato, Prof. Dr. rer. nat. Ulrich Tautenhahn |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/postscript, text/plain, text/plain, text/plain, text/plain, text/plain, text/plain, text/plain, text/plain, text/plain, text/plain, application/zip |
Page generated in 0.0024 seconds