Return to search

Enzymes and electron transport in microbial chlorate respiration

Microbial chlorate respiration plays an important role in the turnover of oxochlorates in nature and industrial waste management. This thesis deals with the characterization of the molecular components of chlorate respiration in Ideonella dechloratans. Chlorate respiration utilizes two soluble periplasmic enzymes, chlorate reductase and chlorite dismutase, to convert chlorate to chloride and oxygen. The genes encoding the enzymes participating in the chlorate degradation have been sequenced, and are found in close proximity, forming a gene cluster for chlorate metabolism. This work also includes the successful recombinant expression of three genes from Ideonella dechloratans. Two of the gene products, chlorite dismutase and the C subunit of chlorate reductase, participate in the chlorate respiration. The third gene, which is found close to the gene cluster for chlorate metabolism, encodes a soluble c-type cytochrome. The localization of the gene suggests the corresponding protein as a candidate for a role as electron donor to chlorate reductase. Also, the role of soluble periplasmic c cytochromes of Ideonella dechloratans in chlorate respiration was studied. At least one of the soluble c cytochromes was found capable of serving as electron donor for chlorate reduction. This c cytochrome, and several others, can also donate electrons to a terminal oxidase for subsequent reduction of oxygen, as required for the branched electron flow during chlorate respiration.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-2805
Date January 2008
CreatorsBohlin, Jan
PublisherKarlstads universitet, Avdelningen för kemi och biomedicinsk vetenskap, Karlstad : Karlstad University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationKarlstad University Studies, 1403-8099 ; 2008:36

Page generated in 0.0027 seconds