Return to search

Dynamic network adaptation for energy saving / Adaptation dynamique des réseaux sans fil pour économiser de l'énergie

Notre travail s'inscrit dans le cadre des recherches sur le Sleeping mode. Notre contribution est structurée principalement autour deux axes : l'étude et l'évaluation de la performance des processus de mise en veille/réveil des points d'accès et la sélection du nombre minimal des points d'accès dans un milieu urbain dense. Dans un premier temps, nous étudions les processus de mise en veille/réveil des points d'accès dans un scenario classique de réseau domestique. Ce scenario suppose que le point d'accès mis en veille doit détecter la présence d'un utilisateur potentiel dans sa zone de couverture et réagir par conséquence d'une façon autonome pour se mettre en état de fonctionnement normal. Nous avons choisi quatre processus de réveil du point d'accès, et nous avons ensuite étudié chacun de ces processus, et proposé un protocole de communication qui permette à un utilisateur d'envoyer l'ordre au point d'accès de s'éteindre. Lorsque cela était possible, nous avons utilisé le protocole COAP qui est prévu pour établir des sessions de commande pour l'Internet des Objets. Nous avons ensuite mesuré les performances du point de vue de l'économie d'énergie qu'il permet de réaliser et du délai entre le moment où un utilisateur potentiel est détecté et le moment où le point d'accès devient opérationnel. Nous avons aussi étudié un réseau dense dans un milieu urbain (le centre ville de Rennes) où la zone de couverture d'un point d'accès pouvait être partiellement ou totalement couverte par d'autres points d'accès. Pour évaluer la redondance dans le réseau, nous avons collecté des informations réelles sur les points d'accès en utilisant l'application Wi2Me. Le traitement de ces informations nous a permis d'identifier les points d'accès existants dans la zone étudiée et leurs zones de couverture respectives démontrant ainsi la superposition de ces zones de couverture et le potentiel d'élimination d'un certain nombre de points d'accès sans affecter la couverture globale. Nous avons alors proposé un système centralisé qui collecte les données de couverture des points d'accès observée par les utilisateur. Nous avons donc utilisé ce simple fait pour centraliser la vue du réseau de plusieurs utilisateurs, ce qui permet d'avoir une vue assez précise de la disponibilité des points d'accès dans une zone géographie. Nous avons alors proposé une représentation de ces données de couverture à travers des matrices qui traitent les différentes erreurs de capture (coordonnées GPS non précises, réutilisation des noms de réseaux, etc). Enfin, nous avons ensuite proposé deux algorithmes permettant de sélectionner l'ensemble minimal des points d'accès requis fournissant une couverture identique à celle d'origine. / The main goal of the thesis is to design an Energy Proportional Network by taking intelligent decisions into the network such as switching on and off network components in order to adapt the energy consumption to the user needs. Our work mainly focuses on reducing the energy consumption by adapting the number of APs that are operating to the actual user need. In fact, traffic load varies a lot during the day. Traffic is high in urban areas and low in the suburb during day work hours, while it is the opposite at night. Often, peak loads during rush hours are lower than capacities of the networks. Thus they remain lightly utilized for long periods of time. Thus keeping all APs active all the time even when the traffic is low causes a huge waste of energy. Our goal is to benefit from low traffic periods by automatically switch off redundant cells, taking into consideration the actual number of users, their traffic and the bandwidth requested to serve them. Ideally we wish to do so while maintaining reliable service coverage for existing and new coming users. First we consider a home networking scenario. In this case only one AP covers a given area. So when this AP is switched off (when no users are present), there will be no other AP to fill the gap of coverage. Moreover, upon the arrival of new users, no controller or other mechanism exists to wake up the AP. Consequently, new arriving users would not be served and would remain out of coverage. The study of the state of the art allowed us to have a clear overview of the existing approaches in this context. As a result, we designed a platform to investigate different methods to wake up an AP using different technologies. We measure two metrics to evaluate the Switching ON/OFF process for the different methods. The first is the energy consumed by the AP during the three phases it goes through. The second is the delay of time for the AP to wake up and be operational to serve the new users. In the second case we consider a dense network such as the ones found in urban cities, where the coverage area of an AP is also covered by several other APs. In other words, the gap resulting from switching off one or several APs can be covered by other neighbouring ones. Thus the first thing to do was to evaluate the potential of switching off APs using real measurements taken in a dense urban area. Based on this collected information, we evaluate how many APs can be switched off while maintaining the same coverage. To this end, we propose two algorithms that select the minimum set of APs needed to provide full coverage. We compute several performance parameters, and evaluate the proposed algorithms in terms of the number of selected APs, and the coverage they provide.

Identiferoai:union.ndltd.org:theses.fr/2017IMTA0067
Date04 December 2017
CreatorsShehadeh, Dareen
ContributorsEcole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, Montavont, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds