Return to search

Limited angle reconstruction for 2D CT based on machine learning

The aim of this report is to study how machine learning can be used to reconstruct 2 dimensional computed tomography images from limited angle data. This could be used in a variety of applications where either the space or timeavailable for the CT scan limits the acquired data.In this study, three different types of models are considered. The first model uses filtered back projection (FBP) with a single learned filter, while the second uses a combination of multiple FBP:s with learned filters. The last model instead uses an FNO (Fourieer Neural Operator) layer to both inpaint and filter the limited angle data followed by a backprojection layer. The quality of the reconstructions are assessed both visually and statistically, using PSNR and SSIM measures.The results of this study show that while an FBP-based model using one or more trainable filter(s) can achieve better reconstructions than ones using an analytical Ram-Lak filter, their reconstructions still fail for small angle spans. Better results in the limited angle case can be achieved using the FNO-basedmodel.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-331367
Date January 2023
CreatorsOldgren, Eric, Salomonsson, Knut
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:177

Page generated in 0.002 seconds