In modern supercomputer architectures, the I/O capabilities do not keep up with the computational speed. Image-based techniques are one very promising approach to a scalable output format for visual analysis, in which a reduced output that corresponds to the visible state of the simulation is rendered in-situ and stored to disk. These techniques can support interactive exploration of the data through image compositing and other methods, but automatic methods of highlighting data and reducing clutter can make these methods more effective. In this paper, we suggest a method of assisted exploration through
the combination of feature-centric analysis with image space techniques and show how the reduction of the data to features of interest reduces occlusion in the output for a set of example applications.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32806 |
Date | 25 January 2019 |
Creators | Bujack, Roxana, Rogers, David H., Ahrens, James |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:15-qucosa2-327974, qucosa:32797 |
Page generated in 0.0019 seconds