Dans le monde de la recherche, l'analyse du signal et plus particulièrement d'image, est un domaine très actif, de par la variété des applications existantes, avec des problématiques telles que la compression de données, la vidéo-surveillance ou encore l'analyse d'images médicales pour ne prendre que quelques exemples. Le mémoire s'inscrit dans ce dernier domaine particulièrement actif. Le nombre d'appareils d'acquisition existant ainsi que le nombre de clichés réalisés, entraînent la production d'une masse importante d'informations à traiter par les praticiens. Ces derniers peuvent aujourd'hui être assistés par l'outil informatique. Dans cette thèse, l'objectif est l'élaboration d'un système d'aide au diagnostic, fondé sur l'analyse conjointe, et donc la comparaison d'images médicales. Notre approche permet de détecter des évolutions, ou des tissus aberrants dans un ensemble donné, plutôt que de tenter de caractériser, avec un très fort a priori, le type de tissu cherché.Cette problématique permet d'appréhender un aspect de l'analyse du dossier médical d'un patient effectuée par les experts qui est l'étude d'un dossier à travers le suivi des évolutions. Cette tâche n'est pas aisée à automatiser. L'œil humain effectue quasi-automatiquement des traitements qu'il faut reproduire. Avant de comparer des régions présentes sur deux images, il faut déterminer où se situent ces zones dans les clichés. Toute comparaison automatisée de signaux nécessite une phase de recalage, un alignement des composantes présentes sur les clichés afin qu'elles occupent la même position sur les deux images. Cette opération ne permet pas, dans le cadre d'images médicales, d'obtenir un alignement parfait des tissus en tous points, elle ne peut que minimiser les écarts entre tissus. La projection d'une réalité 3D sur une image 2D entraîne des différences liées à l'orientation de la prise de vue, et ne permet pas d'analyser une paire de clichés par une simple différence entre images. Différentes structurations des clichés ainsi que différents champs de déformation sont ici élaborés afin de recaler les images de manière efficace.Après avoir minimisé les différences entre les positions sur les clichés, l'analyse de l'évolution des tissus n'est pas menée au niveau des pixels, mais à celui des tissus eux-mêmes, comme le ferait un praticien. Afin de traiter les clichés en suivant cette logique, les images numériques sont réinterprétées, non plus en pixels de différentes luminosités, mais en motifs représentatifs de l'ensemble de l'image, permettant une nouvelle décomposition des clichés, une décomposition parcimonieuse. L'atout d'une telle représentation est qu'elle permet de mettre en lumière un autre aspect du signal, et d'analyser sous un angle nouveau, les informations nécessaires à l'aide au diagnostic.Cette thèse a été effectuée au sein du laboratoire LIPADE de l'Université Paris Descartes (équipe SIP, spécialisée en analyse d'images) en collaboration avec la Société Fenics (concepteur de stations d'aide au diagnostic pour l'analyse de mammographies) dans le cadre d'un contrat Cifre.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00798271 |
Date | 10 January 2013 |
Creators | Boucher, Arnaud |
Publisher | Université René Descartes - Paris V |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds